3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Shape Matter with Sound
qidi

Researchers Shape Matter with Sound

June 6, 2022

Researchers have figured out a way of fusing polymers using “sonochemical reactions”.

Unless you’re a researcher in that field, or adjacent fields, it’s likely you’ve never heard of it before.

Much like a photochemical reaction, which has its curing initiated by photonic energy, a sonochemical reaction is initiated by soundwaves, specifically ultrasound waves.

The researchers from Concordia University, Canada, call this process DSP, or Direct Sound Printing, and this is how it works.

DSP

In the DSP process, the researchers use a transducer to fire an ultrasonic pulse into a fluid medium, in this case, it is a polydimethylsiloxane (PDMS) resin, which is a heat-cured thermoset plastic that has until now been impossible to print with traditional additive manufacturing methods.

sound-2
SLA (top) and DSP (bottom)<br />(Image credit: Concordia University)<br />

The pulse hits the resin and causes the formation of bubbles, which oscillate at ultra high frequencies, causing the formation of heat within the bubble.

According to the research paper, released in Nature Communications, the sonochemical reactions are capable of producing extraordinary high temperature (exceeding 15,000 K), high pressures (exceeding 1000 bar) and fast heating and cooling rates (over 1012 K/s) inside the active cavitation bubbles, known as hotspots.

The extremes in heat and pressure last for just a tiny fraction of a second before the hot bubble causes the resin to cure in its exact location.

By moving the transducer along a toolpath, bubbles can be formed along that toolpath, thereby curing the resin as it moves.

At the focal location in the build material, the chemically active acoustic cavitation region solidifies the liquid resin and deposits it to the platform, or on top of previously deposited and solidified regions. The researchers call this region the ultra-active micro reactor (UAMR) zone, where generated bubbles and polymerized resin appear at the low-pressure zones and then they migrate momentarily to high-pressure zones until they reach the platform or previous solidified pixel where they are deposited. Think of the UAMR like a melt pool, for lack of a better analogy.

The DSP process is capable of producing complex geometries with zero to varying porosity and 280 μm feature size. are printed by our method, Direct Sound Printing (DSP), in a heat curing thermoset, Poly(dimethylsiloxane) that cannot be printed directly so far by any method.

The problem with printing heat-curable thermoset plastics like this is that not only a rapid heating time is required, but a rapid cooling time too. DSP offers both of these perks by nature of the rapidly forming temperature and the rapid cooling experienced in the bubble formation.

sound-1
DSP prints opaque materials and nano-composites too.<br />(Image credit: Concordia University)

One notable feature of DSP is that the curing depth is not dependent on the optical opacity of the materials, unlike with SLA printing. This means that DSP can be used even for printing within the human body, by injecting a region with the material and curing it externally.

This has wide applications for bioprinting, and indeed the researchers have been experimenting with biological material printing also, having successfully printed with tissue phantoms and porcine cells. You can see the pork cell ear in the image below.

bioprinting with sound
Making a pig’s ear out of it. (Image credit: Concordia University)<br />

If you’d like to read more about the research, you can access the full paper over at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

The Fraunhofer Institute for Laser Technology ILT has partnered with powder manufacturer MacLean-Fogg and Toyota to develop a 3D printing solution for manufacturing... read more »

3D Printing Metal
Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

ASTM International Approves New Standard to Streamline AM Processes

ASTM International's additive manufacturing technologies committee (F42) has approved a new standard designed to help businesses navigate the procurement and delivery of 3D... read more »

News
ASTM International Approves New Standard to Streamline AM Processes

Trek Launches 3D Printed AirLoom Saddle Line

Trek has introduced its first 3D-printed saddle series, the Aeolus AirLoom, featuring what the company calls AirLoom lattice technology. The new design updates... read more »

News
Trek Launches 3D Printed AirLoom Saddle Line

QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

QuesTek Innovations has partnered with a global niobium producer to develop a high-temperature alloy designed for additive manufacturing. The project targets aerospace and... read more »

3D Printing Metal
QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

Autodesk Research and Additive Tectonics Develop 3D Printed Floor System with Alternative Materials

Autodesk Research has partnered with Additive Tectonics to develop a new approach to concrete floor construction using 3D printing technology. The collaboration combines... read more »

Construction

NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

The National Renewable Energy Laboratory (NREL) has installed a new laser-powered metal 3D printer at its Flatirons Campus to support marine energy device... read more »

3D Printing Metal
NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

Apple Adopts 3D Printing for Titanium USB-C Ports in New iPhone Air

Apple’s latest smartphone release marks a quiet but notable step in consumer electronics manufacturing: the company has confirmed that its new iPhone Air... read more »

3D Printing Metal
Apple Iphone 17 air

GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

GKN Aerospace announced the expansion of its Newington, Connecticut facility to include a new production line for additively manufactured Fan Case Mount Ring... read more »

Aerospace
GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

UltiMaker Launches Secure 3D Printing Line for Defense Applications

UltiMaker has introduced its Secure Line of 3D printing products specifically designed for defense and high-security environments. The initial lineup includes the UltiMaker... read more »

News
UltiMaker Launches Secure 3D Printing Line for Defense Applications

Digital Manufacturing Centre Delivers 90kg 3D Printed Military Vehicle Component

The Digital Manufacturing Centre (DMC) has completed production of its largest additive manufacturing metal component to date - a 90kg suspension and differential... read more »

3D Printing Metal
Digital Manufacturing Centre Delivers 90kg 3D Printed Military Vehicle Component

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing