3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Shape Matter with Sound
qidi

Researchers Shape Matter with Sound

June 6, 2022

Researchers have figured out a way of fusing polymers using “sonochemical reactions”.

Unless you’re a researcher in that field, or adjacent fields, it’s likely you’ve never heard of it before.

Much like a photochemical reaction, which has its curing initiated by photonic energy, a sonochemical reaction is initiated by soundwaves, specifically ultrasound waves.

The researchers from Concordia University, Canada, call this process DSP, or Direct Sound Printing, and this is how it works.

DSP

In the DSP process, the researchers use a transducer to fire an ultrasonic pulse into a fluid medium, in this case, it is a polydimethylsiloxane (PDMS) resin, which is a heat-cured thermoset plastic that has until now been impossible to print with traditional additive manufacturing methods.

sound-2
SLA (top) and DSP (bottom)<br />(Image credit: Concordia University)<br />

The pulse hits the resin and causes the formation of bubbles, which oscillate at ultra high frequencies, causing the formation of heat within the bubble.

According to the research paper, released in Nature Communications, the sonochemical reactions are capable of producing extraordinary high temperature (exceeding 15,000 K), high pressures (exceeding 1000 bar) and fast heating and cooling rates (over 1012 K/s) inside the active cavitation bubbles, known as hotspots.

The extremes in heat and pressure last for just a tiny fraction of a second before the hot bubble causes the resin to cure in its exact location.

By moving the transducer along a toolpath, bubbles can be formed along that toolpath, thereby curing the resin as it moves.

At the focal location in the build material, the chemically active acoustic cavitation region solidifies the liquid resin and deposits it to the platform, or on top of previously deposited and solidified regions. The researchers call this region the ultra-active micro reactor (UAMR) zone, where generated bubbles and polymerized resin appear at the low-pressure zones and then they migrate momentarily to high-pressure zones until they reach the platform or previous solidified pixel where they are deposited. Think of the UAMR like a melt pool, for lack of a better analogy.

The DSP process is capable of producing complex geometries with zero to varying porosity and 280 μm feature size. are printed by our method, Direct Sound Printing (DSP), in a heat curing thermoset, Poly(dimethylsiloxane) that cannot be printed directly so far by any method.

The problem with printing heat-curable thermoset plastics like this is that not only a rapid heating time is required, but a rapid cooling time too. DSP offers both of these perks by nature of the rapidly forming temperature and the rapid cooling experienced in the bubble formation.

sound-1
DSP prints opaque materials and nano-composites too.<br />(Image credit: Concordia University)

One notable feature of DSP is that the curing depth is not dependent on the optical opacity of the materials, unlike with SLA printing. This means that DSP can be used even for printing within the human body, by injecting a region with the material and curing it externally.

This has wide applications for bioprinting, and indeed the researchers have been experimenting with biological material printing also, having successfully printed with tissue phantoms and porcine cells. You can see the pork cell ear in the image below.

bioprinting with sound
Making a pig’s ear out of it. (Image credit: Concordia University)<br />

If you’d like to read more about the research, you can access the full paper over at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

The Royal Air Force has installed its first internally manufactured 3D printed component on an operational Typhoon fighter jet at RAF Coningsby this... read more »

Aerospace
RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Researchers from the University of California, Irvine and Japan's Okayama and Toho universities have published findings about how chitons develop their exceptionally hard... read more »

Materials
Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

A 3D-printed concrete bridge called Diamanti has been unveiled at the Time, Space, Existence exhibition in Venice as part of a research collaboration... read more »

Construction
3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing