3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Study 3D Printing for Composite Repair
qidi

Researchers Study 3D Printing for Composite Repair

January 10, 2024

In a new paper published, researchers from the Technical University of Denmark have demonstrated two cutting-edge repair methods for Continuous Fiber Composite (CFC) structures. The focus of the investigation was on repairing Continuous Fiber Reinforced Thermoplastic (CFRTP) specimens, employing automated print in-situ repair and adhesive patch repair methods.

Benefits of In-situ Repair

A key advantage of CFRTP 3D printing for composite part repair is its in-situ capability, enabling repairs directly on the damaged part without the need for relocation. This not only saves time and costs but also minimizes operational disruptions. Additionally, the method excels in repairing parts with intricate geometries and internal structures, ensuring adaptability to complex shapes.

Researchers Study 3D Printing for Composite Repair
Anisoprint Composer 3D printer, similar to the one use in the research. (Image Credit: Anisoprint)

The use of CFC printing for structural repairs results in mechanical properties closely resembling the original composite structure. This is particularly advantageous for the repair of high-performance load-bearing structures. Moreover, CFC 3D printing facilitates higher precision and enhanced control over the repair process, ensuring accuracy and consistency.

The utilization of the exact required material for the repair reduces material waste, presenting a more sustainable solution. The approach appears to be a time-efficient, cost-effective, and sustainable method for repairing CFC structures, demonstrating improved performance and extended lifetime.

Methodology

The specimens were printed on an Anisoprint FDM machine, which deposits continuous fiber into a thermoplastic matrix. The study delved into the mechanical performance of the repaired specimens through meticulous tensile testing, a crucial aspect in evaluating the success of repair techniques.

An Instron universal testing machine facilitated the assessments with a 250 kN load cell, maintaining a consistent crosshead speed of 2 mm/min. Strain measurements were executed using two 6 mm long single clip gauges strategically placed on each side of the specimen.

Simultaneously, microstructure investigations provided valuable insights into the structural intricacies of 3D printed composite specimens. Micrographs of cross-sections and side sections revealed a layered-type microstructure, emphasizing the distinct boundaries between the polycarbonate matrix and carbon fiber layers.

Results

The results yielded crucial insights, affirming the success of the proposed repair methods. Both adhesive patch and print in-situ repairs demonstrated the capability to restore the original stiffness and strength of damaged specimens to a high degree.

Specimens
Specimens (a) Intact, (b) Damaged, (c) Repaired by adhesive patch, (d) Repaired in-situ. (Image Credit: Rashvand et. al)

Notably, the elastic modulus of damaged specimens saw remarkable improvements of 30% and 44% through adhesive patch and print in-situ repairs, respectively. The corresponding strength enhancements were substantial at 20% and 28%.

Toughness, a critical metric for material resilience, saw increases of 31% and 36% for adhesive patches and print in-situ repairs in damaged specimens.

Additionally, the analytical model developed by the researchers was able to predict the elastic modulus aligned closely with experimental measurements, affirming its reliability as a predictive tool.

Future Implications

Automated print in-situ repair emerged as the standout performer, surpassing adhesive patch repair in terms of mechanical performance and reliability. Beyond its ability to restore original properties, the automated method carries significant implications for predicting the remaining lifetime of repaired composite structures accurately.

This could potentially lead to a reduction in design safety factors and associated costs, opening new avenues for industries relying on advanced composite materials.

You can read the full (pre-proof) research paper, titled “In-situ and adhesive repair of continuous fiber composites using 3D printing” in the Additive Manufacturing journal, at this link.

Come and let us know your thoughts on our Facebook, X, and LinkedIn pages, and don’t forget to sign up for our weekly additive manufacturing newsletter to get all the latest stories delivered right to your inbox.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

The Royal Air Force has installed its first internally manufactured 3D printed component on an operational Typhoon fighter jet at RAF Coningsby this... read more »

Aerospace
RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Researchers from the University of California, Irvine and Japan's Okayama and Toho universities have published findings about how chitons develop their exceptionally hard... read more »

Materials
Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

A 3D-printed concrete bridge called Diamanti has been unveiled at the Time, Space, Existence exhibition in Venice as part of a research collaboration... read more »

Construction
3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing