3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Study 3D Printing for Composite Repair
revopoint

Researchers Study 3D Printing for Composite Repair

January 10, 2024

In a new paper published, researchers from the Technical University of Denmark have demonstrated two cutting-edge repair methods for Continuous Fiber Composite (CFC) structures. The focus of the investigation was on repairing Continuous Fiber Reinforced Thermoplastic (CFRTP) specimens, employing automated print in-situ repair and adhesive patch repair methods.

Benefits of In-situ Repair

A key advantage of CFRTP 3D printing for composite part repair is its in-situ capability, enabling repairs directly on the damaged part without the need for relocation. This not only saves time and costs but also minimizes operational disruptions. Additionally, the method excels in repairing parts with intricate geometries and internal structures, ensuring adaptability to complex shapes.

Researchers Study 3D Printing for Composite Repair
Anisoprint Composer 3D printer, similar to the one use in the research. (Image Credit: Anisoprint)

The use of CFC printing for structural repairs results in mechanical properties closely resembling the original composite structure. This is particularly advantageous for the repair of high-performance load-bearing structures. Moreover, CFC 3D printing facilitates higher precision and enhanced control over the repair process, ensuring accuracy and consistency.

The utilization of the exact required material for the repair reduces material waste, presenting a more sustainable solution. The approach appears to be a time-efficient, cost-effective, and sustainable method for repairing CFC structures, demonstrating improved performance and extended lifetime.

Methodology

The specimens were printed on an Anisoprint FDM machine, which deposits continuous fiber into a thermoplastic matrix. The study delved into the mechanical performance of the repaired specimens through meticulous tensile testing, a crucial aspect in evaluating the success of repair techniques.

An Instron universal testing machine facilitated the assessments with a 250 kN load cell, maintaining a consistent crosshead speed of 2 mm/min. Strain measurements were executed using two 6 mm long single clip gauges strategically placed on each side of the specimen.

Simultaneously, microstructure investigations provided valuable insights into the structural intricacies of 3D printed composite specimens. Micrographs of cross-sections and side sections revealed a layered-type microstructure, emphasizing the distinct boundaries between the polycarbonate matrix and carbon fiber layers.

Results

The results yielded crucial insights, affirming the success of the proposed repair methods. Both adhesive patch and print in-situ repairs demonstrated the capability to restore the original stiffness and strength of damaged specimens to a high degree.

Specimens
Specimens (a) Intact, (b) Damaged, (c) Repaired by adhesive patch, (d) Repaired in-situ. (Image Credit: Rashvand et. al)

Notably, the elastic modulus of damaged specimens saw remarkable improvements of 30% and 44% through adhesive patch and print in-situ repairs, respectively. The corresponding strength enhancements were substantial at 20% and 28%.

Toughness, a critical metric for material resilience, saw increases of 31% and 36% for adhesive patches and print in-situ repairs in damaged specimens.

Additionally, the analytical model developed by the researchers was able to predict the elastic modulus aligned closely with experimental measurements, affirming its reliability as a predictive tool.

Future Implications

Automated print in-situ repair emerged as the standout performer, surpassing adhesive patch repair in terms of mechanical performance and reliability. Beyond its ability to restore original properties, the automated method carries significant implications for predicting the remaining lifetime of repaired composite structures accurately.

This could potentially lead to a reduction in design safety factors and associated costs, opening new avenues for industries relying on advanced composite materials.

You can read the full (pre-proof) research paper, titled “In-situ and adhesive repair of continuous fiber composites using 3D printing” in the Additive Manufacturing journal, at this link.

Come and let us know your thoughts on our Facebook, X, and LinkedIn pages, and don’t forget to sign up for our weekly additive manufacturing newsletter to get all the latest stories delivered right to your inbox.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

National Grid Trials 3D Printing for Low-Carbon Substations in UK First

National Grid has partnered with Hyperion Robotics and the University of Sheffield to test 3D-printed concrete foundations for electrical substations. The UK-first trial... read more »

Construction
National Grid Trials 3D Printing for Low-Carbon Substations in UK First

Sean Wotherspoon Partners with Zellerfeld to Launch 3D-Printed Footwear Collection

Sean Wotherspoon, the American sneaker designer and vintage collector, has launched a new footwear collection with 3D printing company Zellerfeld. Named "Sean Double... read more »

Fashion
Sean Wotherspoon Partners with Zellerfeld to Launch 3D-Printed Footwear Collection

Phillips Corp and Meltio Partner to Advance Hybrid CNC Technology for Defense Applications

Phillips Corporation has become the first Meltio partner to integrate the Meltio Engine Blue into a Haas CNC machine. The integration was demonstrated... read more »

Military

AutoQuote3D: Streamlining 3D Printing Workflows Through Instant Quoting

Following the recent launch of AutoQuote3D, a platform specifically designed to streamline quoting and order management for 3D printing services, we caught up... read more »

News
AutoQuote3D Launches Full Platform to Streamline 3D Printing Quoting and Order Management

WPI Leads “Rubble to Rockets” Project to 3D Print with Scrap Materials

Worcester Polytechnic Institute (WPI) is leading a new initiative called "Rubble to Rockets" that aims to produce components from scrap metal and mixed... read more »

3D Printing Metal
WPI Leads "Rubble to Rockets" Project to 3D Print with Scrap Materials

Nike Air Max 1000 “Oatmeal” Revealed in First Look

Nike has announced the upcoming Air Max 1000 "Oatmeal" sneaker, set for release in Summer 2025. The new model, priced at $210 USD,... read more »

Fashion

Ember Cafe & Wine Combines Nature-Inspired Architecture with SCG 3D Printed Construction

In the heart of Bangkok’s Rama 9 district, Ember Cafe & Wine offers a blend of culinary craft and architectural innovation. Drawing from... read more »

Construction
Ember Cafe & Wine Combines Nature-Inspired Architecture with 3D Printed Construction

3D Printed Metal Molds Poised to Accelerate US Auto Manufacturing

Oak Ridge National Laboratory (ORNL) researchers have demonstrated that 3D-printed metal molds offer significant advantages for producing large composite components for automotive manufacturing.... read more »

Automotive

Auburn-based XO Armor Joins Montgomery TechLab’s Defense Accelerator Program

XO Armor, a company that specializes in on-site 3D printing of custom-fit protective orthotics, has been selected for the first cohort of Montgomery... read more »

News
Auburn-based XO Armor Joins Montgomery TechLab's Defense Accelerator Program

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing