3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Use Digital Twin for DED Optimization
revopoint

Researchers Use Digital Twin for DED Optimization

January 29, 2023

A group of researchers from Tokyo University of Science and Suwa University of Science, in Japan, have collaborated with TOCALO Co. Ltd. to optimize laser Directed Energy Deposition (DED) with the use of a digital twin.

DED + Digital Twin

The DED process melts the metal particles and fuses them to build up a 3D object, much like typical metal printing, except with a DED process, it does not require a print bed. The melt pool can be manipulated over curved geometries outside of a build chamber, meaning it can be used to repair metal components in situ by depositing metal powders on the surface to be repaired.

DED offers advantages over other 3D printing techniques as it can produce more compact equipment and reduce metal powder waste. However, until now it has largely been difficult to optimize, requiring a large amount of trial and error to get the best results.

To reduce the amount of guesswork needed for the process, the researchers developed a digital twin of the core machining technology based on the fusion of metal in the area to be repaired.

3D numerical analysis of DED process
3D numerical analysis of DED process (Image credit: Tokyo University of Science)

This digital twin was effectively a 3D machining numerical analysis system that made use of a mathematical model of the DED process, and automatically generated a metal powder deposition region with a death-birth algorithm. The system was able to apply the thermal radiation, thermal conduction and viscoplastic/thermoplastic constitutive models to the deposited region, allowing for accurate simulation of the entire state change process from melting to solidification.

A death-birth algorithm is a type of optimization algorithm that iteratively adds or removes elements from the solution set to find the optimal solution. In the context of DED, the death-birth algorithm is used to generate the metal powder deposition region that results in the best repair outcome. The algorithm eliminates the need for trial and error, and instead finds the optimal conditions for the repair process automatically.

Optimized

By incorporating these models into a finite element analysis program, the team was able to predict the forming process conditions, temperature distribution, deformation state, and residual stress distribution in advance, which was then verified through experiments.

Overall, the researchers demonstrated that DED is superior to other repair methods in terms of interfacial strength, with lower residual stresses in the deposited layer, and other improved mechanical properties.

FEA-enabled digital twin.
DED made more efficient with FEA-enabled digital twin. (Image credit: Tokyo University of Science)

“Using our technique, the surface shape of a metal structure can be completely restored on-site, and the disposal of the metal powder required for repair can be significantly reduced,” said Professor Masayuki Arai, Tokyo University of Science.

“However, the optimum forming conditions required for the widespread application of this technology in industry had to be hitherto determined by a trial-and-error process.”

This digital twin has the potential for various industrial applications, such as repairing cavitation thinning on power plant blades, and reducing residual deformation after repairing thinning on gas turbine rotor blades. With its automation and prediction capabilities, the numerical machining analysis system makes DED repair technology more efficient and sustainable.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

UW-Madison Engineers Develop Enhanced Heat Exchanger Using 3D Printing

Engineers at the University of Wisconsin-Madison have created a heat exchanger with complex internal channels that outperforms traditional designs. The team used topology... read more »

3D Printing Metal
UW-Madison Engineers Develop Enhanced Heat Exchanger Using 3D Printing

U.S. Army Soldiers Apply 3D Printing Training to Solve Field Equipment Issues

Two U.S. Army soldiers recently used skills learned at the Naval Aviation School for Additive Manufacturing (NASAM) to produce critical parts during deployment.... read more »

Military
U.S. Army Soldiers Apply 3D Printing Training to Solve Field Equipment Issues

Architect Wins Dezeen Competition with Wave-like 3D Printed Installation

Architect Arthur Mamou-Mani has won the Shaping Water Competition with his installation "Harmonic Tides," which will be built at Clerkenwell Design Week this... read more »

Construction
Architect Wins Competition with Wave-like 3D Printed Installation

Philips Debuts 3D Printable Components for Product Repair

Philips has introduced "Philips Fixables," a new initiative offering free 3D printable replacement components for select products. The program currently features just one... read more »

News
Philips Debuts 3D Printable Components for Product Repair

Caltech Team Advances 3D Printing Inside Living Tissue Using Sound Waves

Caltech researchers have developed a new method for 3D printing polymers inside living organisms. The technique, called deep tissue in vivo sound printing... read more »

Bioprinting
Caltech Team Advances 3D Printing Inside Living Tissue Using Sound Waves

AIRSYS Invests $40 Million in New HQ with World’s Largest Liquid Cooling 3D Printing Factory

AIRSYS Cooling Technologies has started construction on its new global headquarters in Woodruff, South Carolina. The $40-million facility will span over 260,000 square... read more »

News
AIRSYS Invests $40 Million in New HQ with World's Largest Liquid Cooling 3D Printing Factory

Mandrill’s Custom Bonneville T120 Street Tracker Reimagines Classic Design

Chinese custom shop Mandrill Garage has transformed a Triumph Bonneville T120 into a street tracker that blends racing aesthetics with practical functionality. The... read more »

Automotive
Mandrill's Custom Bonneville T120 Street Tracker Reimagines Classic Design

Design Lab Invents Modular, Fully 3D Printed Wheelchair for Kids

MakeGood NOLA has developed a modular, fully 3D-printed wheelchair for children ages 2 to 8. The New Orleans-based adaptive design lab created the... read more »

News

Donkervoort’s New P24 RS Supercar Uses 3D-Printed Intercoolers

Conflux Technology, an Australian company specializing in heat exchangers, has created a 3D-printed intercooler for Donkervoort's upcoming P24 RS supercar. The metal 3D-printed... read more »

Automotive
Donkervoort's New P24 RS Supercar Uses 3D-Printed Intercoolers

3D Printed Concrete Bus Stop Creates Sculptural Shelter in Slovakia

A new 3D-printed concrete bus stop has been installed in Bratislava, Slovakia, as part of urban development in the growing Čerešne district. The... read more »

Construction
3D Printed Concrete Bus Stop Creates Sculptural Shelter in Slovakia

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing