3D Printing
News Videos Newsletter Contact us
Home / News / Robot Gets Printed Self-Healing Mycelium Skin
qidi

Robot Gets Printed Self-Healing Mycelium Skin

January 5, 2023

Researchers at ETH Zurich, Switzerland, have developed a means of 3D printing a self repairing skin using hydrogels loaded with fungal mycelia.

The skin repairs itself when damaged, provided that it the fungal network is allowed to metabolize, and it does so by receiving nutrients. The fact that it is capable of metabolism means that it is a living organism.

When draped over a robotic body, it is the very definition of a cybernetic organism, as described in The Terminator franchise.

Feast your eyes on the living skinned robotic gripper below.

Mycelial skin
Mycelial skin over a robotic gripper. (Image credit: ETH Zurich)

“Living tissue over a metal endoskeleton”

Materials have a tendency to wear and break over time. To repair them requires energy and effort, usually in the form of maintenance, which is performed by a human being. Conversely, living materials have the ability to regenerate and self repair when damaged.

Think of a growing tree trunk, or your own skin. Of course, living materials also require energy to repair, and that is provided by nutrients.

This concept has been applied to an artificial skin which has been 3D printed in the form of a hydrogen grid, and infused with the Ganoderma Lucidum fungus. This type of fungus grows on hardwood in Asia and parts of Europe.

You can see the fruiting body of the fungus in this image.

The Process

The first step in making the living skin involved inoculating the hydrogel with the fungal mycelia. This resulted in the production of a mycelium ink, which was then harvested and loaded into a direct ink writing (DIW) 3D printer.

The hyphae distributed in the ink form an interconnected network of fungal cells within the printed objects, which in this case, were grid like structures in various shapes.

The grid structure allows airways and gaps for the potential dosing of nutrition. The structure can be printed into any geometry, allowing full customisation and directing the growth of the skin.

As mycelium has evolved to grow between gaps, it follows the geometry of the printed grid structure. This property also allows it to self-repair by bridging damaged areas within its own skin.

The mycelium grows according to two different strategies named as phalanx, or guerrilla.

printing process
The printing process. (Image credit: ETH Zurich)

The phalanx strategy involves the coordinated growth of multiple hyphae in a dense, interconnected network, forming a structure known as a mycelial mass or mycelial mat (the skin).

This short-reaching strategy allows the fungus to efficiently explore and colonize new areas in search of food, and it also allows the fungus to defend itself against competitors and predators.

Conversely, the guerrilla strategy is more opportunistic and far-reaching, allowing the mycelium to explore patchy resource landscapes.

The printed mycelia showed both types of growth in the printed network, leading to the growth of a fractal hyphae network giving strength to the printed grid. The hyphae proved to be capable of healing cracks measuring up to 2 mm in width.

The researchers state that there needs to be further development into how the nutrients are provided into the printed skin, as well as how the waste is removed.

In addition to the printed mycelial gripper pictured at the beginning of the article, the researchers printed a skin for an untethered robot.

The combination of living skin over an artificial endoskeleton is the very definition of a cybernetic organism, at least according to James Cameron. Exciting times ahead.

You can read the full paper, titled “Self-regenerating living material made of printed fungi”, published in Nature Materials”, at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

3D-Printed Insects Help Scientists Map the Limits of Mimicry in Nature

Researchers at the University of Nottingham have developed a method to 3D print life-sized, color-accurate insect models for biological research. The team, led... read more »

Environmental

University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

Researchers at the University of Hong Kong (HKU) are working to combine 3D-printed respiratory tissue with lab-grown organoids to create functional airways for... read more »

Bioprinting
University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-Level Flexibility

SHINING 3D has launched its newest flagship 3D scanner, the EinScan Rigil — touted as the world’s first 3D scanner featuring Tri-Mode operation... read more »

News
SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-Level Flexibility

ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

ETH Zurich students have completed a 3D-printed ice cream shop in the Swiss Alpine village of Mulegns. The project, called Gelateria, was designed... read more »

Construction
ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

Hugo Launches 3D Printed Loafers with Zellerfeld

Hugo, the younger brand under Hugo Boss, has partnered with 3D printing company Zellerfeld to create a fully 3D-printed loafer. The shoe is... read more »

Fashion
Hugo Launches 3D Printed Loafers with Zellerfeld

3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

Researchers at the University of Texas at Austin have developed a 3D printing method that can create objects with both soft and hard... read more »

News
3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Students at Queen's University Belfast have developed what they describe as Ireland's first student-built liquid rocket engine. The Kelvin Mk.1, named after Belfast-born... read more »

3D Printing Metal
LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Dassault Systèmes and Patrick Jouin Unveil New 3D Printed Chair

Dassault Systèmes and French designer Patrick Jouin have unveiled Ta.Tamu, a 3D-printed chair developed using the company's 3DEXPERIENCE platform. The project represents a... read more »

News
Dassault Systèmes and Patrick Jouin Unveil New 3D Printed Chair

Endemic Architecture Debuts 3D Printed Homes in Rural California

A development of five 3D-printed homes called Corduroy Castles is currently under construction in Olivehurst, California, a rural town in Yuba County located... read more »

Construction
Endemic Architecture Debuts 3D Printed Homes in Rural California

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing