3D Printing
News Videos Newsletter Contact us
Home / News / Stanford Researchers 3D Print Shapeshifting Particles
revopoint

Stanford Researchers 3D Print Shapeshifting Particles

March 26, 2024

Stanford University engineers have succeeded in printing an elusive type of nanoparticles with transformative potential, known as Archimedean truncated tetrahedrons (ATTs). These nanoparticles, long hailed for their theoretical promise in facilitating rapid phase changes within materials, had proven elusive due to the intricate complexities involved in their fabrication.

Stanford Researchers 3D Print Shapeshifting Particles
Confocal images of truncated tetrahedrons forming several quasi-diamond grains (left). Bond order analysis shows different quasi-diamond grains through alternating colors (right). (Image credit: David Doan & John Kulikowski)

Utilizing cutting-edge 3D nanoprinting techniques, the research team successfully produced tens of thousands of ATTs. This achievement opens doors to a plethora of possibilities, as these nanoparticles were observed to autonomously assemble into various crystal structures, showcasing their intrinsic ability to alter phases within mere minutes by rearranging their geometric configurations.

Such a shapeshifting characteristic holds profound implications across numerous engineering domains, paralleling the transformative atomic rearrangements witnessed in processes like steel tempering or data encoding in computer memory systems.

The unique geometrical properties of ATTs offer a versatile canvas for material design, facilitating the formation of highly sought-after hexagonal patterns or crystalline quasi-diamond structures, each endowed with distinct physical attributes.

Furthermore, the newfound capability to exert precise control over phase transitions heralds a new era of innovation, promising applications ranging from energy-efficient solar panels to aerospace coatings resistant to fogging or icing, and even advanced computing technologies.

Looking ahead, the research team is actively exploring avenues to manipulate these nanoparticles through magnetic fields, electric currents, or thermal stimuli, thereby unlocking even greater potential for transformative applications across diverse industries.

Source: news.stanford.edu

Come and let us know your thoughts on our Facebook, X, and LinkedIn pages, and don’t forget to sign up for our weekly additive manufacturing newsletter to get all the latest stories delivered right to your inbox.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Deep Learning Approach Identifies 3D Printing Sources from Photographs

Researchers from the University of Illinois Urbana-Champaign have developed a new method for identifying the source of 3D printed parts using high-resolution photography... read more »

News
Deep Learning Approach Identifies 3D Printing Sources from Photographs

CEAD to Open Facility for 3D Printed Vessels in The Netherlands

Dutch company CEAD is establishing a new manufacturing facility near its headquarters in Delft. The 2,300-square-meter space will function as a maritime application... read more »

News
CEAD to Open Facility for 3D Printed Vessels in The Netherlands

Fabric8Labs and Wiwynn to Demonstrate ECAM Cold Plate Technology at Computex 2025

Fabric8Labs and Wiwynn have announced a collaboration to showcase advanced cold plates for AI data centers at Computex 2025. The partnership combines Fabric8Labs'... read more »

News
Fabric8Labs and Wiwynn to Demonstrate ECAM Cold Plate Technology at Computex 2025

Stratasys Acquires Key Assets of Forward AM

Stratasys has acquired the key assets and operations of Forward AM, establishing a new standalone company within Stratasys called Mass Additive Manufacturing GmbH.... read more »

News
Stratasys Acquires Key Assets and Operations of Forward AM

Chinese Student’s Custom 3D Printed Drone Sets New Speed Record

A microdrone designed by Chinese student Xu Yang has established a new Guinness World Record, reaching a speed of 340.78 km/h (211.75 mph).... read more »

Aerospace
Chinese Student's Custom 3D Printed Drone Sets New Speed Record

Texas Fisherman Catches Bass Using 3D Printed Duckling Brood Lures

Texas angler Goya Lin has successfully developed a 3D-printed bass lure that resembles a string of ducklings. Lin, who combines mechanical engineering knowledge... read more »

News
Texas Fisherman Catches Bass Using 3D Printed Duckling Brood Lures

3D Printed Self-Watering Planters by Posie Pots

Engineer Kay Wells has developed Posie Pots, a line of 3D-printed self-watering planters that require watering just once a month. The innovative planters... read more »

Environmental
3D Printed Self-Watering Planters by Posie Pots

Virginia Tech Design Team Develops Automated 3D Printer Plate Swapper for Continuous Printing

A student engineering team at VT CRO has created an automated plate swapping system for 3D printers that significantly reduces downtime between print... read more »

News
Virginia Tech Design Team Develops Automated 3D Printer Plate Swapper for Continuous Printing

Fabric8Labs Partners with AEWIN to Deploy ECAM Technology for Thermal Management Solutions

Fabric8Labs has partnered with AEWIN Technologies to develop thermal management solutions for Edge AI systems. The collaboration will utilize Fabric8Labs' Electrochemical Additive Manufacturing... read more »

News
Fabric8Labs Partners with AEWIN to Deploy ECAM Technology for Thermal Management Solutions

3D Printing Breakthrough Enables Multi-Directional Collagen Tissue Fabrication

Researchers at YOKOHAMA National University (YNU) have developed a new method for fabricating complex oriented tissues using fluidic devices and 3D printing. The... read more »

Bioprinting
3D Printing Breakthrough Enables Multi-Directional Collagen Tissue Fabrication

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing