3D Printing
News Videos Newsletter Contact us
Home / News / Super Quiet Drone Propeller Design Wins Contest
qidi

Super Quiet Drone Propeller Design Wins Contest

July 2, 2021

Canada-based aerospace company Delson Aeronautics has won engineering support to assist with the development of their new super quiet drone propellers, which are said to be 50% quieter than commercially available alternatives currently on the market.

The contest, hosted on engineering community website Wevolver.com and sponsored by Mitsubishi Chemical Advanced Materials (MCAM), asked members of the community to design something engineer-y using the KyronMAX range of filled engineering plastics.

Ultimately, the first prize was awarded to Delson Aeronautics who have used the MCAM KyronMAX plastics in combination with a 3D printed injection mold system (SPRINT) to bring their propeller design to realization.

quiet drone
Drone with Delson propellers in flight carrying 3 kg payload (Image credit; Delson Aeronautics)

Injection Molding

Typically, commercial drone blades are injection molded from thermoplastics, or else formed in carbon fiber. The key variables designers need to consider when designing drone propellers are the specific strength and the specific stiffness of the material- no point having a strong blade if it will just bend as soon as it takes the weight of the drone.

And conversely, there’s no point having a stiff blade that just snaps under load. Strength, stiffness and lightweight are needed, hence the specific strength and specific stiffness, which both consider the mass of the material in question.

The KyronMAX materials come in a range of high strength polymers and with a variety of chopped fiber fillers, ensuring that parts made with these materials retain the polymer strength plus the added stiffness of the fiber.

Usually, injection molding of these materials would be prohibitively expensive for a small company just starting out, with mold design potentially running into tens of thousands of dollars for a small part (millions of dollars for something as big as a car dashboard).

But thanks to the MCAM SPRINT (Soluble Printed Injection Tooling) system, engineers can now 3D print their molds in a soluble resin, and use them as they would a traditional metal mold. When the plastic has been injected into the mold and has cooled, the mold can be released from the injection molding system and washed away leaving the fully formed injection molded part intact.

molds
Soluble molds and a traditional metal mold base (Image credit: MCAM)

The result is a strong, stiff, lightweight fully dense part, that is free from the design limitations of traditional injection molded part design (such as draft angle inclusion).

Of course, being soluble, it means this is a one-shot only process, so this SPRINT process is aimed largely at those wishing to create prototypes before committing to a full metal mold design (and cost). It is also suitable for small production runs, depending on individual scenarios. The KyronMAX plastics are transferable to full production injection molding systems, so users such as Delson Aeronautics can rest assured that the materials they use for prototyping can also be used for production – no need to consider revised material properties when scaling up.

In terms of the plastics available for use in the SPRINT system they come in a range of flavours including filled Nylons and PEEKs offering a range of strengths and stiffnesses.

Quiet Propellers

So that is how Delson Aeronautics are using AM for rapid prototyping of injection molded engineering plastic parts. Let’s have a look at the winning propellers in action.

The video below shows a comparison of some commercially available (and noisy) propellers versus the Delson propellers. Turn the volume up to hear the difference!

Pretty quiet, right? That reduction in noise is equal to a 50% reduction in sound pressure, as you can see in the graph below.

thrust
Quiet! Thrust vs Sound Plot (Image credit: Delson Aeronautics)

The team at Delson Aeronautics will work with the MCAM team over the coming months to develop their product, and the new super quiet propellers should hit the market sometime later in 2021.

If you would like to know more about SPRINT or get a quote or discuss some work, then you can upload your file over at this link.

And if you would like to follow Delson Aeronautics on their path to production, you can check out their development log over here.

equinor drone 3d printed part featured
Related Story
First 3D Printed Replacement Part Delivered to Offshore Platform via Drone
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Farsoon Europe GmbH and Stark Future have completed the KLINGA Project, a collaborative engineering initiative that produced more than 1,000 titanium parts using... read more »

3D Printing Metal
Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

The Royal Air Force has installed its first internally manufactured 3D printed component on an operational Typhoon fighter jet at RAF Coningsby this... read more »

Aerospace
RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Researchers from the University of California, Irvine and Japan's Okayama and Toho universities have published findings about how chitons develop their exceptionally hard... read more »

Materials
Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing