3D Printing
News Videos Newsletter Contact us
Home / News / UMaine Researchers to Recycle Wind Turbine Blades for 3D Printing
revopoint

UMaine Researchers to Recycle Wind Turbine Blades for 3D Printing

March 18, 2024

A new initiative at the University of Maine is aiming to repurpose old wind turbine blades into 3D printing feedstock. With a grant of $75,000 from the Department of Energy’s Wind Energy Technologies Office’s Wind Turbine Materials Recycling Prize, a team of researchers from the Advanced Structures and Composites Center (ASCC) is leading the charge.

Their project, aptly named “Blades for Large-Format Additive Manufacturing,” intends to tackle the growing issue of wind blade disposal while advancing the possibilities of additive manufacturing.

UMaine Researchers to Recycle Wind Turbine Blades for 3D Printing

By repurposing shredded wind turbine blade material as feedstock for 3D printing, the team hopes to achieve not only environmental benefits but also cost savings and design flexibility for the construction industry.

“We are grateful for the Department of Energy’s continued support in our mission to advance wind energy technologies,” said Habib Dagher, executive director of the ASCC.
“With thousands of wind blades destined for landfill disposal, this funding allows us to explore the responsible recycling of these products, to reuse and repurpose them as feedstock materials for 3D printing,”

Through innovative compounding methods, the team seeks to ensure the mechanical integrity of the composite material, paving the way for its use in large-scale additive manufacturing processes. The integration of shredded blade material into precast concrete formwork promises to enhance construction practices, offering a sustainable alternative to traditional methods.

Moreover, this project underscores UMaine ASCC’s commitment to environmental stewardship and technological innovation. With a track record of pioneering projects such as BioHome3D and 3Dirigo, ASCC continues to lead the way in advancing sustainable manufacturing practices.

Come and let us know your thoughts on our Facebook, X, and LinkedIn pages, and don’t forget to sign up for our weekly additive manufacturing newsletter to get all the latest stories delivered right to your inbox.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

University of Bristol Researchers are Testing 3D-Printed Structures for Earthquake Resistance

University of Bristol researchers are testing 3D-printed structures for earthquake resistance using a specialized shaking table. The experiment, conducted at the university's Soil... read more »

Construction
University of Bristol Researchers are Testing 3D-Printed Structures for Earthquake Resistance

3D Printing Technology Tested on Historic Bridge in Great Barrington as Potential Solution for Aging Infrastructure

Researchers from UMass Amherst and MIT have successfully applied 3D printing technology to repair a bridge in Great Barrington, Massachusetts. The test utilized... read more »

3D Printing Metal
3D Printing Technology Tested on Historic Bridge in Great Barrington as Potential Solution for Aging Infrastructure

Neighborhood 91 Advances Additive Manufacturing Hub Initiative

The Pittsburgh region is strengthening its position in advanced manufacturing with the development of Neighborhood 91 (N91), an additive manufacturing campus adjacent to... read more »

News
Neighborhood 91 Advances Additive Manufacturing Hub Initiative

Sakuu Receives Fast Company Award for Dry Electrode Printing Technology

Sakuu has been named a winner in Fast Company's 2025 World Changing Ideas Awards for its Kavian dry electrode printing process. The company's... read more »

Electronics
Sakuu Receives Fast Company Award for Dry Electrode Printing Technology

Vietnam Sets Global Record with 3D-Printed Femur for 8-Year-Old Cancer Patient

Vinmec Healthcare System in Vietnam has achieved a medical milestone by successfully implanting the world's first fully 3D-printed titanium femur in an eight-year-old... read more »

Medical
Vietnam Sets Global Record with 3D-Printed Femur for 8-Year-Old Cancer Patient

Qatar Launches World’s Largest 3D-Printed Construction Project to Build New Schools

Qatar has begun construction on two large 3D-printed schools as part of a broader project to build 14 new educational facilities. Each 3D-printed... read more »

Construction
Qatar Launches World's Largest 3D-Printed Construction Project to Build New Schools

Stanford Researchers Develop New Method for 3D Printing Complex Vascular Networks

Stanford University researchers have created a computational platform that designs and 3D prints complex vascular networks needed for bioprinted organs. The system, published... read more »

Bioprinting
Stanford Researchers Develop New Method for 3D Printing Complex Vascular Networks

Rocket Lab Reserves Two Ultra Large-Format Metal 3D Printers from Nikon SLM Solutions

Rocket Lab has signed a Memorandum of Understanding with Nikon SLM Solutions to reserve two upcoming ultra-large format metal additive manufacturing systems. The... read more »

3D Printing Metal
Rocket Lab Reserves Two Ultra Large-Format Metal 3D Printers from Nikon SLM Solutions

3D-Printed Clay Bug Hotel Provides Sustainable Habitat for Insects

French artist and designer Raphaël Emine has created a new project called "Les Utopies Entomologiques" (Entomological Utopias) that combines art with environmental conservation.... read more »

Environmental
3D-Printed Clay Bug Hotel Provides Sustainable Habitat for Insects

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing