3D Printing
News Videos Newsletter Contact us
Home / Aerospace / Largest Plastic Aircraft Part Printed
qidi

Largest Plastic Aircraft Part Printed

July 30, 2021

Aerospace is gradually looking at new ways to replace metals with plastics, and existing plastics with even better, modern plastics, composites, and manufacturing methods.

Traditionally, aircraft structures have been made from metals, and more recently from composites. Composite manufacturing itself is labor intensive, but modern composites can offer superior performance to both metals and plastics.

A partnership in the Netherlands between industry and the academe has been working on creating large aerospace structures using robotic fiber placement, and they have so far produced a large fuselage skin panel, measuring over 8 metres in length.

The project, named “STUNNING”, aims to utilize modern manufacturing techniques to create a next generation fleet of aircraft with reduced weight (and reduced emissions) while maintaining the same strength and durability of steel and aluminum in their structures.

In addition, the project will reduce the total time of production and maintenance activities associated with aircraft structures.

You can see the component, which has been described as the largest singular plastic part ever made for an aircraft, in the image below.

nlr-printed-aircraft-part
STUNNING skin section (Image credit: Royal NLR)

The acronym “STUNNING”, in case you were wondering, stands for “SmarT mUlti-fuNctionNal and INtegrated thermoplastic fuselaGe”.

The project is coming under the MFFD (Multifunctional Fuselage Demonstration) framework which itself falls under the European Clean Sky 2 program. As you can guess from the name, Clean Sky 2 is focused on developing innovations to reduce emissions from aircraft.

The partnership working on STUNNING comprises Royal NLR, GKN Fokker, TU Delft, and Diehl Group.

They have created their 8.5 metre long (4m diameter) fuselage skin panel with their automatic fiber placement machine, which lays the pre-preg fibers down robotically, as you can see in the video below. During fiber placement, the fibers are rapidly heated, allowing the thermoplastic resin to bond to the preceding layer. The teams are opting for thermoplastic resin as opposed to thermoset because thermoplastic can be reheated and reformed over and over, ensuring uniformity in bonding.

After the structure is formed, it is placed in an autoclave to even things out a bit and enhance the performance of the structure overall.

Ultimately, the sections will be assembled to form the larger fuselage section, which is the main goal of the MFFD project, which is being overseen by Airbus.

“Beyond optimising the weight savings, the production processes we’re developing are less time consuming which means using less energy, and these efficiencies will eventually translate into CO2 and NOx reductions,” said Ralf Herrmann, Airframe Research & Technology Typical Fuselage at Airbus Operations GmbH.

“Another important aspect is that by using thermoplastic material, components at the end of their service life can be recycled”.

You can see a drawing of a larger assembled fuselage barrel section in the image below.

drawing
Assembled “barrel (Image credit: Clean Sky)

“It is necessary to remove the artificial separation of functions at the aircraft pre-design stage and to plan for a high production rate of aircraft manufacturing, assembly and installation right at the start,” said Paolo Trinchieri, Project Officer at Clean Sky.

“It is not only a question of the thermoplastic materials but also a question of how to design systems that are more efficient in order to increase the rate of aircraft, reduce cost and lower the aircraft weight. This is one of the key factors of the Multifunctional Fuselage Demonstrator project — to devise new solutions to design the fuselage structure and to integrate the systems and the cabin elements in a better way”.

The MFFD project is aiming to have the final barrel ready by the end of 2022.

You can read more about the MFFD project over at this link.

ge additive
Related Story
GE gets USAF Airworthiness Cert for Metal AM Critical Part
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Trek Launches 3D Printed AirLoom Saddle Line

Trek has introduced its first 3D-printed saddle series, the Aeolus AirLoom, featuring what the company calls AirLoom lattice technology. The new design updates... read more »

News
Trek Launches 3D Printed AirLoom Saddle Line

QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

QuesTek Innovations has partnered with a global niobium producer to develop a high-temperature alloy designed for additive manufacturing. The project targets aerospace and... read more »

3D Printing Metal
QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

Autodesk Research and Additive Tectonics Develop 3D Printed Floor System with Alternative Materials

Autodesk Research has partnered with Additive Tectonics to develop a new approach to concrete floor construction using 3D printing technology. The collaboration combines... read more »

Construction

NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

The National Renewable Energy Laboratory (NREL) has installed a new laser-powered metal 3D printer at its Flatirons Campus to support marine energy device... read more »

3D Printing Metal
NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

Apple Adopts 3D Printing for Titanium USB-C Ports in New iPhone Air

Apple’s latest smartphone release marks a quiet but notable step in consumer electronics manufacturing: the company has confirmed that its new iPhone Air... read more »

3D Printing Metal
Apple Iphone 17 air

GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

GKN Aerospace announced the expansion of its Newington, Connecticut facility to include a new production line for additively manufactured Fan Case Mount Ring... read more »

Aerospace
GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

UltiMaker Launches Secure 3D Printing Line for Defense Applications

UltiMaker has introduced its Secure Line of 3D printing products specifically designed for defense and high-security environments. The initial lineup includes the UltiMaker... read more »

News
UltiMaker Launches Secure 3D Printing Line for Defense Applications

Digital Manufacturing Centre Delivers 90kg 3D Printed Military Vehicle Component

The Digital Manufacturing Centre (DMC) has completed production of its largest additive manufacturing metal component to date - a 90kg suspension and differential... read more »

3D Printing Metal
Digital Manufacturing Centre Delivers 90kg 3D Printed Military Vehicle Component

Designer Creates Modular Sneakers with 3D Printed Soles and Climbing Rope Laces

Daniyar Uderbekov, a designer based in Kazakhstan, has developed UDRB, a pair of modular sneakers designed to address environmental concerns in the footwear... read more »

Fashion

Nestlé Expands 3D Printing Operations for Manufacturing Parts Across UK Sites

Nestlé has implemented standardized 3D printing processes across its UK manufacturing facilities over the past year. The company uses a team of three... read more »

News
Nestlé Expands 3D Printing Operations for Manufacturing Parts Across UK Sites

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing