3D Printing
News Videos Newsletter Contact us
Home / Company / 3D Systems / Industry Collaboration Highlights Path to 3D Printed Lungs
qidi

Industry Collaboration Highlights Path to 3D Printed Lungs

May 17, 2021

Earlier this year 3D Systems announced that they would be stepping up their efforts in the realm of bioprinting, in particular they intend to collaborate further with United Therapeutics and their subsidiary Lung Biotechnology, for the manufacture of printed organ scaffolds.

So what are the details of this enhanced collaboration and what does it mean for the future of 3D printed organs? Read on to know more about their development plans for engineered lungs.

Collaboration

3D Systems has been working with United Therapeutics for a while and much of their work has been focused on the development of printer systems and processes for organ scaffolds. It would seem that the main platform being used here has been the 3D Systems Figure 4 system in combination with various proprietary bioinks.

In 2020 it was announced that the companies had successfully demonstrated high rate, micron-level printing, which is required for vascularization (needed to sustain living cells). In addition, they had made significant developments in material formulation using a unique rhCollagen.

These big steps forward have led to the increased commitment to the research, as announced earlier this year.

With the further investment the partners will develop these processes further.

The research will help open up opportunities in regenerative medicine, including the development of non-solid organ applications requiring biologically sustainable vasculature (blood vessels). You can see an example of the printed blood vessels in the image below.

Human vasculature model
Human vasculature model created using Print to Perfusion process (Image credit: United Therapeutics)

Print to Perfusion

This research has culminated in the Print to Perfusion process.

This involves using the custom materials and optimized process to rapidly create high-resolution hydrogel scaffolds which can be perfused with living cells to create tissues.

“We put a team together between the two companies,” said Chuck Hull, CTO of 3D Systems, in an interview with Forbes.

“There was a lot to work out. We decided to print the scaffolds with hydrogels, because the body is mostly water, but that meant printing a material that’s gooey and soft. We’re used to printing in hard plastics. Once we got that figured out, then we knew the cells needed someplace to grow. That meant printing in fine detail to allow spaces for cells to live in. But printing smaller, with high resolution, slows things down, so then we needed higher print speeds.

Those things have taken the last three years to figure out, and there’s still clinical trials and regulatory work to be done—but on the technology side of the scaffolds themselves, I’d say we could implement that now.”

United Therapeutics has a “pipeline of development” on their website, showing milestones they hope to achieve with this process.

They plan to start by developing technologies such as inhalation devices for Trepostinil (for the relief of Pulmonary arterial hypertension) in the short term. The manufactured organs will presumably aid with this path of drug discovery.

Medium term, they say they will be developing other inhalation technologies for treatment of lung diseases and move into the manufacture of xeno-organs (made from pig organ scaffolds) such as the xeno-kidney, xeno-heart and uni-lung.

The long term goal is clearly to engineer a pair of transplantable lungs for use in late stage lung disease patients, with a printed scaffold and perfused with either allogeneic cells or cells from the patient.

Will it really be so simple? Click on a link and buy a new set of 3D Printed lungs?

We may have to wait a while for the tech to mature and get certified for use in humans. But for now, it seems like there is a clear route emerging.

fluid dynamics
Related Story
AM Brings Unparalleled Design Freedom to Fluid Dynamics
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Trek Launches 3D Printed AirLoom Saddle Line

Trek has introduced its first 3D-printed saddle series, the Aeolus AirLoom, featuring what the company calls AirLoom lattice technology. The new design updates... read more »

News
Trek Launches 3D Printed AirLoom Saddle Line

QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

QuesTek Innovations has partnered with a global niobium producer to develop a high-temperature alloy designed for additive manufacturing. The project targets aerospace and... read more »

3D Printing Metal
QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

Autodesk Research and Additive Tectonics Develop 3D Printed Floor System with Alternative Materials

Autodesk Research has partnered with Additive Tectonics to develop a new approach to concrete floor construction using 3D printing technology. The collaboration combines... read more »

Construction

NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

The National Renewable Energy Laboratory (NREL) has installed a new laser-powered metal 3D printer at its Flatirons Campus to support marine energy device... read more »

3D Printing Metal
NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

Apple Adopts 3D Printing for Titanium USB-C Ports in New iPhone Air

Apple’s latest smartphone release marks a quiet but notable step in consumer electronics manufacturing: the company has confirmed that its new iPhone Air... read more »

3D Printing Metal
Apple Iphone 17 air

GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

GKN Aerospace announced the expansion of its Newington, Connecticut facility to include a new production line for additively manufactured Fan Case Mount Ring... read more »

Aerospace
GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

UltiMaker Launches Secure 3D Printing Line for Defense Applications

UltiMaker has introduced its Secure Line of 3D printing products specifically designed for defense and high-security environments. The initial lineup includes the UltiMaker... read more »

News
UltiMaker Launches Secure 3D Printing Line for Defense Applications

Digital Manufacturing Centre Delivers 90kg 3D Printed Military Vehicle Component

The Digital Manufacturing Centre (DMC) has completed production of its largest additive manufacturing metal component to date - a 90kg suspension and differential... read more »

3D Printing Metal
Digital Manufacturing Centre Delivers 90kg 3D Printed Military Vehicle Component

Designer Creates Modular Sneakers with 3D Printed Soles and Climbing Rope Laces

Daniyar Uderbekov, a designer based in Kazakhstan, has developed UDRB, a pair of modular sneakers designed to address environmental concerns in the footwear... read more »

Fashion

Nestlé Expands 3D Printing Operations for Manufacturing Parts Across UK Sites

Nestlé has implemented standardized 3D printing processes across its UK manufacturing facilities over the past year. The company uses a team of three... read more »

News
Nestlé Expands 3D Printing Operations for Manufacturing Parts Across UK Sites

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing