3D Printing
News Videos Newsletter Contact us
Home / Construction / 3D Printed Plastic Rebar Replacement Used to Make Greener Concrete
qidi

3D Printed Plastic Rebar Replacement Used to Make Greener Concrete

October 28, 2020

I always start these eco-friendly concrete articles with a reminder of how environmentally unfriendly normal concrete manufacturing is, because it really can’t be overstated.

First up, concrete is the second most used material on the planet, after water. If it was a country, it would be the 3rd biggest producer of industrial CO2 emissions in the world. And don’t forget how much concrete production has ramped up these last few years. In between 2014-2016, China produced more concrete than the US did in the entire 20th century.

And it’s not just the manufacture of concrete that is environmentally unfriendly. Concrete is great in compression, but lousy in tension or bending or torsion, and so often requires the addition of steel rebar, which itself is labour and energy intensive to manufacture and install.

As you can see, the environmental aspects of concrete production as a whole could do with some disruption.

A team of researchers at UC Berkeley have been working on one angle which may reduce the environmental impact of concrete production that involves using 3D printed plastic internal structures in place of the rebar. How will this help? Read on.

Rebar Replace(ment)

First up, how does the process work?

Simply, a support geometry (like a lattice) is printed with filament deposition 3D printing, and the lattice is placed into a pouring mould. The team experimented with ABS and PLA polymers. Next, an ultra high performance concrete (UHPC), is poured into the mould, covering the plastic structure, just like a rebar. You can see the lattice below.

3D printed plastic rebar
3D printed plastic rebar. (Image credit: UC Berkeley)

You can see UHPC being poured inside the mould and covering the lattice in the image below. The finished product just resembles a normal block/slab of concrete, except with the benefit of reduced labour involved in laying up rebar, tying it together with wire, and all the rest of it. All of this manual labour is now reduced to a CAD file and a few button clicks. And that’s not to mention the environmental benefits of polymers over rebar.

27543748
To create composite beams, the researchers poured ultra-high-performance concrete around the lattices. (Image credit: UC Berkeley)

“The reaction that produces cement inherently produces CO2,” said Hayden Taylor, assistant professor of mechanical engineering at UC Berkeley.

“In contrast, there is a conceivable route toward polymers that are net carbon-neutral or even potentially carbon-negative through the use of biopolymers, recycling and renewable energy sources.”

By digitally manipulating the geometry of the lattices in the CAD/simulation stages, concrete pieces can be optimized to have greater strength resilience in all directions (isotropic, instead of anisotropic)), and in addition, the lattice can reduce crack propagation.

With traditionally manufactured polymer-matrix concretes, the fiber distribution is uneven, and can cause routes for cracks to propagate. The deposition of the polymer is CNC controlled, and so the crack behaviour can be better predicted and the mesh can be designed to “nip it (the crack) in the bud”, as it were.

“Cracks are very clever,” said Claudia Ostertag, professor of civil and environmental engineering at UC Berkeley. “They will choose the path of least resistance. However, in this case the cracks are no longer able to avoid the reinforcement due to its uniform 3D arrangement.”

And of course, being in wonderful Industry 4.0, there are many tools available to assist with the optimization of these lattices.

Topology Optimization can be used to create even lighter structures, capable of carrying the same loads as heavier, bulkier (over-engineered) structures. The requirements could be fed into a Generative Design software, and various statistical methods of experimentation and AI could even lead a hand in optimization.

“Going forward, my biggest question is how to choose the best lattice structure for a particular application,” said Brian Salazar, lead author of the research paper released recently. “There could be even more optimal geometries waiting to be found.”

3d printed lattices
Related Story
How 3D Printed Lattice Structures Improve Mechanical Properties
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

NAMI Partners with Lockheed Martin to 3D Print Aerospace Components in Saudi Arabia

National Additive Manufacturing and Innovation Company (NAMI) has entered into a collaboration agreement with Lockheed Martin to qualify and produce critical military and... read more »

Aerospace
NAMI Partners with Lockheed Martin to 3D Print Aerospace Components in Saudi Arabia

Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

The Fraunhofer Institute for Laser Technology ILT has partnered with powder manufacturer MacLean-Fogg and Toyota to develop a 3D printing solution for manufacturing... read more »

3D Printing Metal
Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

ASTM International Approves New Standard to Streamline AM Processes

ASTM International's additive manufacturing technologies committee (F42) has approved a new standard designed to help businesses navigate the procurement and delivery of 3D... read more »

News
ASTM International Approves New Standard to Streamline AM Processes

Trek Launches 3D Printed AirLoom Saddle Line

Trek has introduced its first 3D-printed saddle series, the Aeolus AirLoom, featuring what the company calls AirLoom lattice technology. The new design updates... read more »

News
Trek Launches 3D Printed AirLoom Saddle Line

QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

QuesTek Innovations has partnered with a global niobium producer to develop a high-temperature alloy designed for additive manufacturing. The project targets aerospace and... read more »

3D Printing Metal
QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

Autodesk Research and Additive Tectonics Develop 3D Printed Floor System with Alternative Materials

Autodesk Research has partnered with Additive Tectonics to develop a new approach to concrete floor construction using 3D printing technology. The collaboration combines... read more »

Construction

NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

The National Renewable Energy Laboratory (NREL) has installed a new laser-powered metal 3D printer at its Flatirons Campus to support marine energy device... read more »

3D Printing Metal
NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

Apple Adopts 3D Printing for Titanium USB-C Ports in New iPhone Air

Apple’s latest smartphone release marks a quiet but notable step in consumer electronics manufacturing: the company has confirmed that its new iPhone Air... read more »

3D Printing Metal
Apple Iphone 17 air

GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

GKN Aerospace announced the expansion of its Newington, Connecticut facility to include a new production line for additively manufactured Fan Case Mount Ring... read more »

Aerospace
GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

UltiMaker Launches Secure 3D Printing Line for Defense Applications

UltiMaker has introduced its Secure Line of 3D printing products specifically designed for defense and high-security environments. The initial lineup includes the UltiMaker... read more »

News
UltiMaker Launches Secure 3D Printing Line for Defense Applications

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing