3D Printing
News Videos Newsletter Contact us
Home / Electronics / 3D Printed Aerogels for Miniature Thermal Insulation
qidi

3D Printed Aerogels for Miniature Thermal Insulation

November 2, 2020

Heat transfer occurs via three mechanisms, being conduction (via a solid), convection (via fluids) and radiation (via space).

Electronic components are generally in contact with some other component, hence why conduction is an issue for PCB designers and electrical package designers. The answer to (some of) their woes lies in thermal insulation, which slows or alleviates the flow of heat from one solid body into another.

Aerogels, which are silicate foams with porous structures, are some of the best insulating materials on Earth, but thus far have been limited to larger applications. This is due largely to the brittleness of the material which makes it difficult to machine into smaller pieces. In addition, larger aerogel structures typically feature some kind of fibre reinforcement such as polymer strands, in order to strengthen it (like rebar in concrete, which is also fairly brittle). Again, adding fibres to very small structures is also challenging.

A team of researchers at Empa, ETH Zurich and the Paul Scherrer Institute (Switzerland) has apparently addressed this issue of scalability by 3D printing tiny aerogel structures measuring just 100 microns across, and thus opening the door for small-scale electronic insulation.

This little lotus flower was printed with aerogel (Image credit: EMPA)

Small

The team, who recently published their findings in Nature, has developed the 3D printed aerogel using a printable silica ink, has applied for a patent for the process which not only allows for the printing of stable, small-scale aerogel structures, but structures that are machinable too. They can be milled, drilled and ground just like any other material for precision engineering applications.

Cool(er)

We know that aerogel is awesome at insulation, and this mini version is no different with a thermal conductivity of just under 16 mW/(m*K). It performs as a typical aerogel in that regard, so to scale down…simply machine it.

The team did this and tested it on some electronic components to see how the mini structure fared under a test. The thermal images in the picture below show how the small aerogel piece was able to insulate other components from the heat emitted from a voltage controller component.

The aerogel can reduce localized heatspots in small electronic devices. (Image credit: EMPA)

The image above shows 3 different cases. From left to right the thermal images show heat on an uninsulated component, the same component with an aluminium strip (like a heatsink) and finally, with the small aerogel piece. As you can see, the aerogel is preventing the heat from the component from transferring its heat to the rest of the board and other components.

Great success!

By varying the flow and solidification properties of the silica ink, the team is able to tune the printed material so that it can form thin wafers and even overhangs.

And naturally, the final printed piece behaves just like a normal aerogel, as shown in the video below where the printed lotus flower floats on top of the surface of a volume of water. Because just like a normal aerogel, the printed version is less dense than water and is hydrophobic.

Knudsen Pump

The team was also able to print a functional Knudsen pump, which is a pump without moving parts.

A Knudsen pump works on the principle of restricted gas transport in a network of nanoscale pores or one-dimensional channels, and works by application of light. The pump is doped with manganese oxide particles and when the dark particles are blasted with light it warms up and passes gas through the system. This is one example of how mini-aerogel structures can be combined to form multi-material structures.

This research could have applications for medical implants where devices are required to be kept under 37 degrees celcius to avoid heat damage to body tissue as well as air purifiers with no moving parts. A very topical product for 2020!

thermally conductive polymer materials for 3d printing
Related Story
Thermally Conductive Polymer Materials for 3D Printing
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

British manufacturer Rapid Fusion has introduced "Bob," an AI-powered assistant designed to optimize operations for its large-format 3D printing systems. The company developed... read more »

News
Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Shenzhen-based 3D printer manufacturer Creality has submitted a prospectus to the Hong Kong Stock Exchange for a main board listing. The company began... read more »

News
Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Graphjet Technology has entered into a collaboration agreement with the Centre for Materials Engineering and Smart Manufacturing (MERCU) at Universiti Kebangsaan Malaysia (UKM).... read more »

News
Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Humtown drives US Manufacturing Comeback with Additive Sand Casting

Humtown Products, an Ohio-based company, is positioning itself to serve manufacturers looking to bring production back to the United States. The company specializes... read more »

News
Humtown drives US Manufacturing Comeback with Additive Sand Casting

Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Oak Ridge National Laboratory has released a comprehensive dataset for its Peregrine software, which monitors and analyzes parts created through powder bed additive... read more »

News
Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Creality has announced the launch of the K2 and K2 Pro, two new additions to its high-end K series. Built on a rigid... read more »

3D Printers
Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Farsoon Europe GmbH and Stark Future have completed the KLINGA Project, a collaborative engineering initiative that produced more than 1,000 titanium parts using... read more »

3D Printing Metal
Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing