3D Printing
News Videos Newsletter Contact us
Home / Electronics / 3D Printed Aerogels for Miniature Thermal Insulation
qidi

3D Printed Aerogels for Miniature Thermal Insulation

November 2, 2020

Heat transfer occurs via three mechanisms, being conduction (via a solid), convection (via fluids) and radiation (via space).

Electronic components are generally in contact with some other component, hence why conduction is an issue for PCB designers and electrical package designers. The answer to (some of) their woes lies in thermal insulation, which slows or alleviates the flow of heat from one solid body into another.

Aerogels, which are silicate foams with porous structures, are some of the best insulating materials on Earth, but thus far have been limited to larger applications. This is due largely to the brittleness of the material which makes it difficult to machine into smaller pieces. In addition, larger aerogel structures typically feature some kind of fibre reinforcement such as polymer strands, in order to strengthen it (like rebar in concrete, which is also fairly brittle). Again, adding fibres to very small structures is also challenging.

A team of researchers at Empa, ETH Zurich and the Paul Scherrer Institute (Switzerland) has apparently addressed this issue of scalability by 3D printing tiny aerogel structures measuring just 100 microns across, and thus opening the door for small-scale electronic insulation.

This little lotus flower was printed with aerogel (Image credit: EMPA)

Small

The team, who recently published their findings in Nature, has developed the 3D printed aerogel using a printable silica ink, has applied for a patent for the process which not only allows for the printing of stable, small-scale aerogel structures, but structures that are machinable too. They can be milled, drilled and ground just like any other material for precision engineering applications.

Cool(er)

We know that aerogel is awesome at insulation, and this mini version is no different with a thermal conductivity of just under 16 mW/(m*K). It performs as a typical aerogel in that regard, so to scale down…simply machine it.

The team did this and tested it on some electronic components to see how the mini structure fared under a test. The thermal images in the picture below show how the small aerogel piece was able to insulate other components from the heat emitted from a voltage controller component.

The aerogel can reduce localized heatspots in small electronic devices. (Image credit: EMPA)

The image above shows 3 different cases. From left to right the thermal images show heat on an uninsulated component, the same component with an aluminium strip (like a heatsink) and finally, with the small aerogel piece. As you can see, the aerogel is preventing the heat from the component from transferring its heat to the rest of the board and other components.

Great success!

By varying the flow and solidification properties of the silica ink, the team is able to tune the printed material so that it can form thin wafers and even overhangs.

And naturally, the final printed piece behaves just like a normal aerogel, as shown in the video below where the printed lotus flower floats on top of the surface of a volume of water. Because just like a normal aerogel, the printed version is less dense than water and is hydrophobic.

Knudsen Pump

The team was also able to print a functional Knudsen pump, which is a pump without moving parts.

A Knudsen pump works on the principle of restricted gas transport in a network of nanoscale pores or one-dimensional channels, and works by application of light. The pump is doped with manganese oxide particles and when the dark particles are blasted with light it warms up and passes gas through the system. This is one example of how mini-aerogel structures can be combined to form multi-material structures.

This research could have applications for medical implants where devices are required to be kept under 37 degrees celcius to avoid heat damage to body tissue as well as air purifiers with no moving parts. A very topical product for 2020!

thermally conductive polymer materials for 3d printing
Related Story
Thermally Conductive Polymer Materials for 3D Printing
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

NAMI Partners with Lockheed Martin to 3D Print Aerospace Components in Saudi Arabia

National Additive Manufacturing and Innovation Company (NAMI) has entered into a collaboration agreement with Lockheed Martin to qualify and produce critical military and... read more »

Aerospace
NAMI Partners with Lockheed Martin to 3D Print Aerospace Components in Saudi Arabia

Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

The Fraunhofer Institute for Laser Technology ILT has partnered with powder manufacturer MacLean-Fogg and Toyota to develop a 3D printing solution for manufacturing... read more »

3D Printing Metal
Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

ASTM International Approves New Standard to Streamline AM Processes

ASTM International's additive manufacturing technologies committee (F42) has approved a new standard designed to help businesses navigate the procurement and delivery of 3D... read more »

News
ASTM International Approves New Standard to Streamline AM Processes

Trek Launches 3D Printed AirLoom Saddle Line

Trek has introduced its first 3D-printed saddle series, the Aeolus AirLoom, featuring what the company calls AirLoom lattice technology. The new design updates... read more »

News
Trek Launches 3D Printed AirLoom Saddle Line

QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

QuesTek Innovations has partnered with a global niobium producer to develop a high-temperature alloy designed for additive manufacturing. The project targets aerospace and... read more »

3D Printing Metal
QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

Autodesk Research and Additive Tectonics Develop 3D Printed Floor System with Alternative Materials

Autodesk Research has partnered with Additive Tectonics to develop a new approach to concrete floor construction using 3D printing technology. The collaboration combines... read more »

Construction

NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

The National Renewable Energy Laboratory (NREL) has installed a new laser-powered metal 3D printer at its Flatirons Campus to support marine energy device... read more »

3D Printing Metal
NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

Apple Adopts 3D Printing for Titanium USB-C Ports in New iPhone Air

Apple’s latest smartphone release marks a quiet but notable step in consumer electronics manufacturing: the company has confirmed that its new iPhone Air... read more »

3D Printing Metal
Apple Iphone 17 air

GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

GKN Aerospace announced the expansion of its Newington, Connecticut facility to include a new production line for additively manufactured Fan Case Mount Ring... read more »

Aerospace
GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

UltiMaker Launches Secure 3D Printing Line for Defense Applications

UltiMaker has introduced its Secure Line of 3D printing products specifically designed for defense and high-security environments. The initial lineup includes the UltiMaker... read more »

News
UltiMaker Launches Secure 3D Printing Line for Defense Applications

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing