3D Printing
News Videos Newsletter Contact us
Home / Electronics / 3D Printed Aerogels for Miniature Thermal Insulation
qidi

3D Printed Aerogels for Miniature Thermal Insulation

November 2, 2020

Heat transfer occurs via three mechanisms, being conduction (via a solid), convection (via fluids) and radiation (via space).

Electronic components are generally in contact with some other component, hence why conduction is an issue for PCB designers and electrical package designers. The answer to (some of) their woes lies in thermal insulation, which slows or alleviates the flow of heat from one solid body into another.

Aerogels, which are silicate foams with porous structures, are some of the best insulating materials on Earth, but thus far have been limited to larger applications. This is due largely to the brittleness of the material which makes it difficult to machine into smaller pieces. In addition, larger aerogel structures typically feature some kind of fibre reinforcement such as polymer strands, in order to strengthen it (like rebar in concrete, which is also fairly brittle). Again, adding fibres to very small structures is also challenging.

A team of researchers at Empa, ETH Zurich and the Paul Scherrer Institute (Switzerland) has apparently addressed this issue of scalability by 3D printing tiny aerogel structures measuring just 100 microns across, and thus opening the door for small-scale electronic insulation.

This little lotus flower was printed with aerogel (Image credit: EMPA)

Small

The team, who recently published their findings in Nature, has developed the 3D printed aerogel using a printable silica ink, has applied for a patent for the process which not only allows for the printing of stable, small-scale aerogel structures, but structures that are machinable too. They can be milled, drilled and ground just like any other material for precision engineering applications.

Cool(er)

We know that aerogel is awesome at insulation, and this mini version is no different with a thermal conductivity of just under 16 mW/(m*K). It performs as a typical aerogel in that regard, so to scale down…simply machine it.

The team did this and tested it on some electronic components to see how the mini structure fared under a test. The thermal images in the picture below show how the small aerogel piece was able to insulate other components from the heat emitted from a voltage controller component.

The aerogel can reduce localized heatspots in small electronic devices. (Image credit: EMPA)

The image above shows 3 different cases. From left to right the thermal images show heat on an uninsulated component, the same component with an aluminium strip (like a heatsink) and finally, with the small aerogel piece. As you can see, the aerogel is preventing the heat from the component from transferring its heat to the rest of the board and other components.

Great success!

By varying the flow and solidification properties of the silica ink, the team is able to tune the printed material so that it can form thin wafers and even overhangs.

And naturally, the final printed piece behaves just like a normal aerogel, as shown in the video below where the printed lotus flower floats on top of the surface of a volume of water. Because just like a normal aerogel, the printed version is less dense than water and is hydrophobic.

Knudsen Pump

The team was also able to print a functional Knudsen pump, which is a pump without moving parts.

A Knudsen pump works on the principle of restricted gas transport in a network of nanoscale pores or one-dimensional channels, and works by application of light. The pump is doped with manganese oxide particles and when the dark particles are blasted with light it warms up and passes gas through the system. This is one example of how mini-aerogel structures can be combined to form multi-material structures.

This research could have applications for medical implants where devices are required to be kept under 37 degrees celcius to avoid heat damage to body tissue as well as air purifiers with no moving parts. A very topical product for 2020!

thermally conductive polymer materials for 3d printing
Related Story
Thermally Conductive Polymer Materials for 3D Printing
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

University of Pennsylvania Researchers Develop Carbon-Capturing Concrete

Researchers at the University of Pennsylvania have created a new type of concrete that captures carbon dioxide while maintaining structural integrity. The material... read more »

Construction

Dutch 3D Printing Startup Novenda Technologies Raises $6.1M for Dental Manufacturing Platform

Dutch startup Novenda Technologies has secured $6.1 million in Series A funding to advance its multi-material 3D printing platform for dental products. The... read more »

Dental

Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Singapore-based startup Unigons has launched a limited collection of 3D-printed Merlion figurines made from recycled plastic bottles. The company produced 60 pieces of... read more »

News
Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Designer Liam de la Bedoyere has developed the Dog Hut Side Table, a piece of furniture that combines a resting space for dogs... read more »

News
Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Scientists 3D Print Solar-Powered Sponge for Seawater Desalination

Researchers have developed a 3D-printed aerogel material that uses sunlight to convert seawater into drinking water. The sponge-like structure contains microscopic vertical channels... read more »

News

Revopoint Launches Major Prime Event 2025 Sale with Up to 40% Off 3D Scanners and Accessories

Revopoint is kicking off its Prime Event 2025 with a series of major discounts on its range of professional 3D scanners and accessories.... read more »

News

Turkish Companies Test 3D Printed Component for Armored Vehicles

MetalWorm and Nurol Makina, both based in Ankara, Turkey, have completed testing of an armored vehicle component manufactured using Directed Energy Deposition (DED)... read more »

3D Printing Metal
Turkish Companies Test 3D Printed Component for Armored Vehicles

McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

TissueTinker, a McGill University spinout company, has developed 3D bioprinting technology to create miniaturized tumor models for cancer drug testing. The company recently... read more »

Medical
McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

The University of Twente has received €13.6 million in funding from the 2024 NWA ORC program to lead two research projects focused on... read more »

News
University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing