3D Printing
News Videos Newsletter Contact us
Home / Environmental / 3D Printed Membranes for Water Osmosis
revopoint

3D Printed Membranes for Water Osmosis

November 27, 2020

Researchers at Singapore University of Technology and Design (SUTD) and Nanyang Technological University (NTU Singapore) have been investigating methods to print microfiltration membranes and spacers using a variety of AM and hybrid 3D printing processes.

The membranes and membrane spacers are used extensively in water treatment processes such as microfiltration / nanofiltration, reverse osmosis and membrane distillation.

Membrane spacers are traditionally made by extrusion and welding of low-density polypropylene filaments into a mesh. This separates the membranes, which themselves are normally manufactured from porous ceramics, or polymers.

Ceramic membranes have a high cost due to the high temperature requirements of the manufacturing process. Polymer membrane manufacture is so complex it requires accurate control and monitoring of process parameters that it similarly adds to the costs.

And so the research team has examined the current capabilities of AM when applied to these components, as well as observed the limitations. Many of these limitations can be overcome by use of hybrid AM.

Fast-Complexity concrete slab featured image
Related Story
New Hybrid Process Combines Concrete Casting with 3D Printing

3D Printing & Hybrid 3D Printing

Due to the small diameter required for the membrane pores (0.1–1.0 µm) it is difficult to manufacture the membranes with 3D printing alone, due to the limits in resolution of 3D printers. For this reason, various Hybrid 3D printing approaches were reviewed.

A Hybrid approach requires secondary processes to attain the pore diameters beyond what 3D printing can provide alone. For the Hybrid AM strategy, researchers examined dip-coating, thermal curing, thermal sintering and debinding in combination with various AM methods to make the prototypes.

The 3D printing methods included material extrusion, material jetting, powder bed fusion, vat photopolymerization and binder jetting.

The spacers were successfully manufactured with AM, and Hybrid AM was not needed at that point. Hybrid AM appears to offer more value in membrane production than spacer production, at least for the immediate future.

The paper concludes by identifying limitations in current AM technology regarding resolution, and suggests that Hybrid AM can serve a purpose for producing membranes. In terms of pure AM processes however, Two-Photon Polymerization (TPP) method seems to offer the highest resolution for such small pores.

“It will not be an easy challenge to overcome upscaling and material limitations, but consistent research efforts are already evident today,” said Professor Chua Chee Kai co-author and Head of Pillar for Engineering Product Development, SUTD.

“Potentially, 4D printing can even be a possibility in the future to fabricate smart spacers and membranes that adapt to its surrounding environment.”

You can read the full research paper over at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Peter Strikwerda
Co-Founder 3DPrinting.com
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

Researchers at the University of Texas at Austin have developed a 3D printing method that can create objects with both soft and hard... read more »

News
3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Students at Queen's University Belfast have developed what they describe as Ireland's first student-built liquid rocket engine. The Kelvin Mk.1, named after Belfast-born... read more »

3D Printing Metal
LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Dassault Systèmes and Patrick Jouin Unveil New 3D Printed Chair

Dassault Systèmes and French designer Patrick Jouin have unveiled Ta.Tamu, a 3D-printed chair developed using the company's 3DEXPERIENCE platform. The project represents a... read more »

News
Dassault Systèmes and Patrick Jouin Unveil New 3D Printed Chair

Endemic Architecture Debuts 3D Printed Homes in Rural California

A development of five 3D-printed homes called Corduroy Castles is currently under construction in Olivehurst, California, a rural town in Yuba County located... read more »

Construction
Endemic Architecture Debuts 3D Printed Homes in Rural California

3D Printed Replica of a 500-year-old Prosthetic Hand Hints at Life of a Renaissance Amputee

Researchers at Auburn University are using 3D printing technology to recreate Renaissance-era prosthetic devices, providing new insights into historical amputee experiences. The interdisciplinary... read more »

News
3D Printed Replica of a 500-year-old Prosthetic Hand Hints at Life of a Renaissance Amputee

United Utilities Expands 3D Printing for Water Infrastructure Operations

United Utilities is incorporating 3D printing technology into its operations following the completion of a two-year Water Industry Printfrastructure project. The initiative, funded... read more »

News
United Utilities Expands 3D Printing for Water Infrastructure Operations

New Frontier Aerospace Successfully Tests 3D-Printed Rocket Engine

New Frontier Aerospace has completed a series of hot-fire tests of its 3D-printed Mjölnir rocket engine, the company announced from its Kent, Washington... read more »

Aerospace
New Frontier Aerospace Successfully Tests 3D-Printed Rocket Engine

FRCE Innovation Lab Creates Rapid Solution for F-35 Fleet

Fleet Readiness Center East (FRCE) has produced 2,000 O-ring installation tools for F-35 Lightning II aircraft using 3D printing technology. The project was... read more »

Military
FRCE Innovation Lab Creates Rapid Solution for F-35 Fleet

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing