3D Printing
News Videos Newsletter Contact us
Home / Medical / Tuneable Stiffness from Crosslinked Polymers
revopoint

Tuneable Stiffness from Crosslinked Polymers

October 12, 2020

Tunable stiffness is highly desirable in the world of medical implant manufacture.

When 3D printing prosthetics (especially bone replacements) it’s important to get the variable stiffness of the bone correct. Bones are not solid. They have little structures / voids that vary in size and distribution throughout the bone, allowing the bone to flex non-uniformly depending on where the load is applied.

When you put fully dense structure (such as a solid titanium hip-joint) inside a body, it can cause stress shielding as it connects with the existing body structures, and this can result in patient injury, deterioration of the joints over time, and ultimately, a new replacement being needed to replace the old one.

We have seen geometric solutions for this in the form of orthopedic-centred topology optimization and generative design, which aims to replicate those little structures (named “trabeculae”) in an implant. The varying density of the structures along the bone allow flex at certain points of the bone.

medical-topology
Related Story
Topology Optimization for Compliant Medical Devices

We have not seen much however in the polymer science side, but that may all be about to change thanks to ongoing research from the Texas A&M University and the U.S. Army’s Combat Capabilities Development Command’s Army Research Laboratory, who have managed to print a polymer that can be tuned to a specific stiffness defending on the application.

Crosslinking

Synthetic polymers are usually made rubbery by addition of a hardener, which crosslinks the material’s long polymer chains.

“We hijacked the hardener, and attached some molecules that can bond and rebond at a certain temperature,” said Frank Gardea, a researcher at the Army Research Laboratory.

Now when the material is heated up, it will run like a fluid, rather than just melt into a blob like a traditional elastic polymer. Additionally, when the fluid cools, it will harden again, which is a useful property to have when 3D printing. .

“The temperature of the print bed is much cooler than the nozzle, so as it’s being printed, it solidifies because of this chemistry,” said Gardea.

Adding more crosslinks to the polymer chains increases the stiffness of the polymer.

The team also discovered (accidentally) that the new material has the ability to self-heal. When the surfaces of two pieces of the material were placed together, it was observed that the two halves started to rebond to each other. Within 12 hours the 2 parts had become one, with no joins. Typically the application of heat or some chemical would be needed to get the polymers to join together so efficiently. In this case, all they used was time.

“When a defect forms, it breaks that dynamic bond, and when broken, it becomes active. It wants to resolve itself; it looks for a partner to bond to,” said Gardea.

In addition to stiffening the polymer, the team claims that they can make programmable structures with the parts changing shape under application of heat.

For example, they have built a model of a hand using this material, which can change from a clenched fist into a peace sign.

“Ideally, the goal would be to have the material do an infinite amount of shapes. We are right now at two. We are limited because the chemistry only has two states,” said Gardea.

Self healing skins have a wide range of applications ranging from aircraft skin, to artificial limbs.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Mandrill’s Custom Bonneville T120 Street Tracker Reimagines Classic Design

Chinese custom shop Mandrill Garage has transformed a Triumph Bonneville T120 into a street tracker that blends racing aesthetics with practical functionality. The... read more »

Automotive
Mandrill's Custom Bonneville T120 Street Tracker Reimagines Classic Design

Design Lab Invents Modular, Fully 3D Printed Wheelchair for Kids

MakeGood NOLA has developed a modular, fully 3D-printed wheelchair for children ages 2 to 8. The New Orleans-based adaptive design lab created the... read more »

News

Donkervoort’s New P24 RS Supercar Uses 3D-Printed Intercoolers

Conflux Technology, an Australian company specializing in heat exchangers, has created a 3D-printed intercooler for Donkervoort's upcoming P24 RS supercar. The metal 3D-printed... read more »

Automotive
Donkervoort's New P24 RS Supercar Uses 3D-Printed Intercoolers

3D Printed Concrete Bus Stop Creates Sculptural Shelter in Slovakia

A new 3D-printed concrete bus stop has been installed in Bratislava, Slovakia, as part of urban development in the growing Čerešne district. The... read more »

Construction
3D Printed Concrete Bus Stop Creates Sculptural Shelter in Slovakia

Reducing Porosity Key to Stronger Large-Scale 3D Prints

Oak Ridge National Laboratory (ORNL) researchers have created a vacuum-assisted extrusion technique that reduces internal porosity in large-scale 3D-printed polymer parts by up... read more »

News

Engineer Creates 3D Printed Trekking Pole Attachment to Combat Trail Litter

Aerospace engineer John McShane has developed "CleanTrek," a 3D-printed attachment for hiking poles designed to collect litter on trails. Inspired by a trash-strewn... read more »

Environmental
Engineer Creates 3D Printed Trekking Pole Attachment to Combat Trail Litter

New $9M Illinois Lab to 3D Print Large Vehicle Parts for US Military

The University of Illinois Urbana-Champaign is establishing a new research center focused on developing additive manufacturing methods for large metal parts. The center... read more »

Military
New $9M Illinois Lab to 3D Print Large Vehicle Parts for US Military

University of Florida Students Develop Simple Spool to Address 3D Printing Waste

A team of University of Florida mechanical engineering students has created a device aimed at reducing plastic waste in 3D printing. The device,... read more »

Environmental
University of Florida Students Develop Simple Spool to Address 3D Printing Waste

Cadillac CELESTIQ Features Over 100 3D Printed Parts in Luxury Hand-Built Design

General Motors has expanded its use of additive manufacturing beyond prototyping to include functional parts in production vehicles. The Cadillac CELESTIQ, a hand-built... read more »

Automotive

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing