3D Printing
News Videos Newsletter Contact us
Home / 3D Printing Metal / Lawrence Livermore Researchers Identify Reason Behind Defects in Metal Printing
qidi

Lawrence Livermore Researchers Identify Reason Behind Defects in Metal Printing

August 2, 2017

Metal printing is a complex field of manufacturing. There are so many variables to consider that it can become difficult to know where the print went wrong. Similarly, Metal Powder Bed Fusion technologies suffer from a condition called “spatter”, where particles of liquid metal jump out of the way of the laser. Previously, researchers had assumed this was the result of recoil from the laser itself. New research suggests that this is not the case.

The newest findings on the matter point towards the possibility that some defects in metal prints are the result of ambient gas flow above the powder bed causing an “inward entrainment” effect, relocating the particles as a result. As gas flows out of the melt pool a majority of the particle flow inwards because of these expulsions. While recoil does play a role, it is significantly less so than the movement of gas.

Related Story
Metal 3D Printing: An Overview of the Most Common Types

“It turns out only about 15 percent of the ejections of molten particles are caused by splashing in the melt pool, which was the assumed mechanism—the rest is primarily cold particles passing through the laser beam above the melt pool and some other factors,” said engineer Gabe Guss. “It’s surprising because when one watches commercial printers, you see the hot ejections and they look like they come from simply outward gas pressure, not the inward entrainment effect.”

Spatter is a major issue. As particles get caught up in the gas flow, they can get caught in the laser and contaminate the layer. It can cause bumps and bruises in the print and waste material. It causes an overall decrease in the quality of the parts and identifying it is a big step toward superior prints.

Studying Metal Printing

The study has been published by Scientific Reports. It illustrates how the researchers used ultrafast imaging of melt-pool dynamics and high-resolution simulations to observe the whole process and draw conclusions. They used 3 different kinds of cameras, including a sensor capable of capturing up to 10 million frames per second. The researchers then compared these video images to high-fidelity simulations.

The main purpose of the simulations was to showcase what happened below the melt pool, a place where the cameras could not observe all the variables. Consequently, they discovered that the incline of the melt pool is a major factor in reducing spatter.

This sort of research will help improve existing powder bed technologies. Currently, one of the things holding back the adoption of metal printing is consistency in parts. This promises to be one of the major steps in mitigating the problems caused by spatter.

Related Story
Oerlikon & Lufthansa Collaborate to Improve AM Repeatability

Image and video courtesy of Lawrence Livermore University.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

The Royal Air Force has installed its first internally manufactured 3D printed component on an operational Typhoon fighter jet at RAF Coningsby this... read more »

Aerospace
RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Researchers from the University of California, Irvine and Japan's Okayama and Toho universities have published findings about how chitons develop their exceptionally hard... read more »

Materials
Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

A 3D-printed concrete bridge called Diamanti has been unveiled at the Time, Space, Existence exhibition in Venice as part of a research collaboration... read more »

Construction
3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

Caltech Researchers Develop 3D Printing Method for Custom Metal Alloys

Scientists at Caltech have created a new technique that allows precise control over the composition and structure of metal alloys through 3D printing.... read more »

3D Printing Metal
Caltech Researchers Develop 3D Printing Method for Custom Metal Alloys

University of Maine Researchers Develop Method to Predict Strength of 3D-Printed Lightweight Components

Engineers at the University of Maine's Advanced Structures and Composites Center have developed a new method to predict the strength of lightweight 3D-printed... read more »

News
University of Maine Researchers Develop Method to Predict Strength of 3D-Printed Lightweight Components

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing