3D Printing
News Videos Newsletter Contact us
Home / 3D Printing Metal / Researchers use Machine Learning for Monitoring In-situ Metal Pore Formation
qidi

Researchers use Machine Learning for Monitoring In-situ Metal Pore Formation

August 10, 2020

Porosity and other defects are a problem where it comes to parts printed with metal powder bed fusion processes.

One team of researchers from the U.S. Department of Energy’s Argonne National Laboratory, and Texas A&M University have published their findings which may play a part in reducing these subsurface defects.

The team has figured out a novel way of monitoring the formation of porosity as well as measuring the temperature of a region at the very moment of printing of Ti-6Al-4V powder.

Specifically, the researchers were interested in observing the formation of keyhole pores, which are formed when a surplus of energy is concentrated in the metal melt pool for too long. These pores can act as stress concentrators in the final part’s structure, leading to part unpredictability under load, and potential failures.

By use of a top-down high speed thermal camera in the build area of the laser fusion printer they are able to log the exact temperature at a certain time during printing, and correlate that with additional scans from synchrotron x-ray imaging taken at the exact same moment. This helps to build a picture of how the thermal history of the fused part affects the microstructure of the printed metal.

The X-ray equipment was located at Argonne’s Advanced Photon Source (APS), home of one of the most powerful X-ray sources in the world.

Why the need for fast imaging?

The formation of these pores of interest are random, and as they are formed they can trap inert gases from the printer within the pores, forcing instability of the pore. To this end, capturing this data with external measurements has been elusive until recent developments of in-situ monitoring.

To draw correlations between the thermal history and other parameters gathered in-situ, the team employs machine learning to churn through the data and identify statistically significant responses from their experiments.

The main focus of the paper is indeed this machine learning methodology, and the team has presented four statistical machine-learning models that correlate temperature histories to subsurface porosity formation.
The end results of the experiments, in addition to providing new machine learning methods for prediction of defects, have also demonstrated that there is indeed a correlation between surface temperature and subsurface pore formation.

“Having the top and side views at the same time is really powerful. With the side view, which is what is truly unique here with the APS setup, we could see that under certain processing conditions based on different time and temperature combinations porosity forms as the laser passes over,”said Noah Paulson, lead author of the research paper.

Keyhole pore in titanium powder (Image credit: <a href="https://www.researchgate.net/profile/Haijun_Gong/publication/280114580_Melt_Pool_Characterization_for_Selective_Laser_Melting_of_Ti-6Al-4V_Pre-alloyed_Powder/links/55aad94a08ae481aa7fbcc46/Melt-Pool-Characterization-for-Selective-Laser-Melting-of-Ti-6Al-4V-Pre-alloyed-Powder.pdf" rel="noopener noreferrer" target="_blank">Melt Pool Characterization for Selective Laser Melting of Ti-6Al-4V Pre-alloyed Powder</a>: Haijun Gong et al)

With this process, it may be possible to correlate the super-sensitive X-ray readings from the APS with the readily available thermal readings from everyday metal printers, and thus help on the spot flaw detection, as it happens, on the shop floor.

This is important, as current methods of defect detection generally requires detailed examination of the part after it has been printed. And once it has been printed with a defect, there is nothing anybody can do about it.

“Ultimately you would be able to print something and collect temperature data at the source and you could see if there were some abnormalities, and then fix them or start over,” said Aaron Greco, group manager at Argonne’s Interfacial Mechanics & Materials group in the Applied Materials Division (AMD)

“Right now, there’s a risk associated with 3D printing errors, so that means there’s a cost. That cost is inhibiting the widespread adoption of this technology,” he continued.

“To realize its full potential, we need to lower the risk to lower the cost.”

Are we going to see AI-fault detection in 3D printing in future?

If we wish to have the repeatability and predictability of machined or wrought parts, then it may indeed be a step in the right direction.

You can read the full paper here.

LLNL Analyse Metal Printing Using X-Rays
Related Story
LLNL Analyze Metal Printing Using X-Rays
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Bentley Unveils EXP 15 Design Concept Featuring 3D Printed Titanium Finishes

Bentley Motors has revealed its EXP 15 concept vehicle at the opening of its new design studio in Crewe. The five-meter concept model... read more »

Automotive
Bentley Unveils EXP 15 Design Concept Featuring 3D Printed Titanium Finishes

COBOD Launches Multifunctional Construction Robot with Shotcrete 3D Printing Capabilities

COBOD International has introduced what it describes as the first commercially available multifunctional construction robot, developed in collaboration with Technische Universität Braunschweig. The... read more »

Construction
COBOD Launches Multifunctional Construction Robot with Shotcrete 3D Printing Capabilities

MIT Engineers Develop Implantable Device for Emergency Diabetes Treatment

MIT researchers have developed an implantable device that can automatically release glucagon when blood sugar levels drop dangerously low in Type 1 diabetes... read more »

Medical
MIT Engineers Develop Implantable Device for Emergency Diabetes Treatment

University of Pennsylvania Researchers Develop Carbon-Capturing Concrete

Researchers at the University of Pennsylvania have created a new type of concrete that captures carbon dioxide while maintaining structural integrity. The material... read more »

Construction

Dutch 3D Printing Startup Novenda Technologies Raises $6.1M for Dental Manufacturing Platform

Dutch startup Novenda Technologies has secured $6.1 million in Series A funding to advance its multi-material 3D printing platform for dental products. The... read more »

Dental

Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Singapore-based startup Unigons has launched a limited collection of 3D-printed Merlion figurines made from recycled plastic bottles. The company produced 60 pieces of... read more »

News
Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Designer Liam de la Bedoyere has developed the Dog Hut Side Table, a piece of furniture that combines a resting space for dogs... read more »

News
Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Scientists 3D Print Solar-Powered Sponge for Seawater Desalination

Researchers have developed a 3D-printed aerogel material that uses sunlight to convert seawater into drinking water. The sponge-like structure contains microscopic vertical channels... read more »

News

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing