3D Printing
News Videos Newsletter Contact us
Home / 3D Printing Metal / LLNL Analyze Metal Printing Using X-Rays
qidi

LLNL Analyze Metal Printing Using X-Rays

July 11, 2018

Lawrence Livermore National Laboratory has made some great breakthroughs in metal AM. Now, they’re looking into how complex mechanisms drive defects and limit part quality. Using X-rays, the teams are looking into how metal prints form during laser powder bed fusion processes.

Related Story
Metal 3D Printing: An Overview of the Most Common Types

The project is in collaboration with SLAC National Accelerator Laboratory and Ames Laboratory. To do this Nick Calta and his team designed and built a portable diagnostic machine that probes melt pools. This machine is crucial in alayzing the inner structures of the metal prints that come out. The researchers analysed how the metals solidified with imaging and X-ray diffraction.

Portable Diagnostics Devices

LLNL Analyse Metal Printing Using X-Rays

“We’re getting information about the melt pool structure and what can go wrong during a build,” notes LLNL physicist and Laser Materials Science group leader Ibo Matthews. “For example, the vapor plume created by the laser heating the melt pool can create pockets and pores in parts. These pore defects can serve as stress concentrators and compromise the mechanical properties of the part.”

The researchers can thus measure how the laser’s path, heat buildup, and gas plume create defects. Such research could allow for research into new improvements and generate confidence in maunfaturing parts. The collaboration between these teams is an offshoot of the Energy Department’s National Laboratories Big Ideas Summit. This project is based around mapping out pore formation and extracting information on cooling rates. While these processes are useful, they are not at their peak yet. Eventually, the researchers want to implement them into optical diagnostics typically used on commercial machines to correlate with the X-ray imaging.

Distortion Simulation AddOn Aids Metal Print Accuracy
Related Story
Distortion Simulation AddOn Aids Metal Print Accuracy

“You can’t tell what’s inside the box by looking outside the box,” said LLNL Chair Anthony Van Buuren. “The purpose of this project is to accelerate the adoption of additive manufacturing (AM) for metallic components across the manufacturing sector by developing sophisticated in-situ tools to enable rapid process development of the AM components.”

“With new materials, we don’t yet understand the properties and we need to be able to look at the process in real-time,” Van Buuren added. “It’s a bit different focus than what we usually do at the Lab. We want to build up a capacity that industry would come in and use.”

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Researchers at the University of Cambridge's Center for Industrial Photonics have developed a new additive manufacturing technique called laser-assisted cold spray (LACS). The... read more »

3D Printing Metal
Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Titomic Netherlands Secures Strategic Funding to Advance Cold Spray 3D Printing Technology

Titomic Limited, an Australian company specializing in cold spray additive manufacturing, has received €800,000 in funding from the Netherlands' 3D Print Kompas program.... read more »

3D Printing Metal
Titomic Netherlands Secures Strategic Funding to Advance Cold Spray 3D Printing Technology

3D-Printed Insects Help Scientists Map the Limits of Mimicry in Nature

Researchers at the University of Nottingham have developed a method to 3D print life-sized, color-accurate insect models for biological research. The team, led... read more »

Environmental

University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

Researchers at the University of Hong Kong (HKU) are working to combine 3D-printed respiratory tissue with lab-grown organoids to create functional airways for... read more »

Bioprinting
University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-sumer Flexibility

SHINING 3D has launched its newest flagship 3D scanner, the EinScan Rigil — touted as the world’s first 3D scanner featuring Tri-Mode operation... read more »

News
SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-Level Flexibility

ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

ETH Zurich students have completed a 3D-printed ice cream shop in the Swiss Alpine village of Mulegns. The project, called Gelateria, was designed... read more »

Construction
ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

Hugo Launches 3D Printed Loafers with Zellerfeld

Hugo, the younger brand under Hugo Boss, has partnered with 3D printing company Zellerfeld to create a fully 3D-printed loafer. The shoe is... read more »

Fashion
Hugo Launches 3D Printed Loafers with Zellerfeld

3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

Researchers at the University of Texas at Austin have developed a 3D printing method that can create objects with both soft and hard... read more »

News
3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Students at Queen's University Belfast have developed what they describe as Ireland's first student-built liquid rocket engine. The Kelvin Mk.1, named after Belfast-born... read more »

3D Printing Metal
LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing