3D Printing
News Videos Newsletter Contact us
Home / 3D Printing Metal / Reusing Metal Powders
qidi

Reusing Metal Powders

November 20, 2020

Metal powders are costly, and depending on the geometry of the part, can be even more costly due to unused powders which often go unrecycled. Big hollow parts leave a lot of unused powder.

GE has just published a white paper showing a few different strategies for reusing AM metal powders, and we will summarize those strategies in this article.

Powder and Process Dependant

Not all metal powders are equal where it comes to reusability.

Materials such as Nickel alloys can be reused multiple times without much change to the shape of the powder particles or other physical properties. Nickel alloys are generally non-reactive.

Titanium alloy powders are reactive and accumulate oxygen as the number of reuse cycles increases, therefore having a negative effect on the part strength.

In addition, the process can affect the way that powders are contaminated. Electron Beam Melting (EBM) methods rely on vacuum, and trace amounts of oxygen can still remain in the system, and so can small amounts of moisture.

With laser melting methods such as Laser Powder Bed Fusion (LPBF), inert gases in the chamber help reduce oxygen buildup. But in both cases, wherever there is human interaction with the powder, contamination looms.

To that end, the best way of maintaining the quality of the part is to avoid any contamination at all. In other words, the best way to maintain quality while reusing powder, is to simply not reuse the powder at all.

But that’s not the answer you were looking for, is it?

The Answer

GE examines four different scenarios, and their effects on cost, quality, and simplicity.

You can see how these scenarios fare against each other in the table below.

metal powder reuse table

In the table the four scenarios/strategies are:

  • No Reuse: This is self explanatory. There is no reuse of powder. This route produces the highest quality parts but takes a hit on cost.
  • 2 Bin: In the 2 bin strategy, the print is first completed with virgin powder and any remaining powder in the machine is unloaded and stored in a container labeled as “1 reuse”.
    Subsequent prints use the remaining virgin powder from the same original batch and any remaining powder goes into the 1 reuse bin. When all the virgin powder batch is depleted, the 1 reuse powder is sieved and used to top up the machine. Any remainder of that already reused powder then goes into a second container labelled “2 reuse”. The process repeats until the specified number of reuses is reached, which will be dependent on the contamination of the powder.
  • Virgin Blend: The virgin blend approach uses virgin powder to top up used powder, therefore replenishing the missing elements in the used powder or diluting the levels of oxygen and other unwanted contaminants.
  • Top-up Newest: This approach is a combination of the 2 bin method and the virgin blend method.

Used powder is rejuvenated but low reuse powders are used instead of virgin powder. You are effectively topping up the batch with the newest reused powders.

metal post processing featured image
Related Story
Post Processing, The Biggest Hurdle for Metal AM

Effective Design of Experiments

In a nutshell, GE says that there is no one-size-fits-all solution for experimenting with reusing metal powders. Experiments are expensive and time consuming, especially when dealing with multiple factors and levels. Each experiment must be evaluated and the scope must be defined in advance to maximize effectivity.

“Conversations about powder reuse often begin with an aspiration to perform an all encompassing design-of-experiment that reveals everything about powder re-use,” says the white paper.

“Unfortunately, in our experience, this path is not practical in a business setting. We have found that the scope of the reuse study needs to be tightly defined and limited as much as possible, especially when all sources of potential variation are considered”.

What they are saying here is that because of the variation from case-to-case, a bespoke experiment using intrinsic knowledge must be employed to make high value discoveries rather than using a broad “screening experiment” approach.

If you wish to experiment with your own powder reuse strategies, then the list of 4 methods above should give you a solid place to start from.

Download Paper
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail

About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Oak Ridge National Laboratory has released a comprehensive dataset for its Peregrine software, which monitors and analyzes parts created through powder bed additive... read more »

News
Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Creality has announced the launch of the K2 and K2 Pro, two new additions to its high-end K series. Built on a rigid... read more »

3D Printers
Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Farsoon Europe GmbH and Stark Future have completed the KLINGA Project, a collaborative engineering initiative that produced more than 1,000 titanium parts using... read more »

3D Printing Metal
Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing