3D Printing
News Videos Newsletter Contact us
Home / News / Detecting Filament Flow Rates with Computer Vision
qidi

Detecting Filament Flow Rates with Computer Vision

January 22, 2022

In-situ monitoring of the status of feedstocks is a popular topic among researchers, regardless of the type of printer being used.

Inroads are being made towards greater quality control and repeatability by use of various sensors in the printing process in both metal and plastic printing, and these technologies may very well end up in consumer products…especially if there isn’t too much expensive hardware involved.

One team at Penn State University is carving one such inroad in the area of FFF printing, and they have published details about their research into computer vision aided filament measurement in the Manufacturing Processes and Systems section of the Materials journal.

Using a microscope camera, an FFF printer and a whole bunch of code, researcher Rakshith Badarinath set about using computer vision to detect the width (and hence, volumetric flow rate) of the extruded filament as it was exiting the heated nozzle. In addition, a thermocouple was added to the nozzle itself to monitor the temperature to determine any impact this also had on the extruded filament. The nozzle exit temperature is critical in determining the interlayer bond strength (and bond quality) of the deposited filament tracks.

flow rate
Get width, get volume, get flow rate. (Image credit: The Pennsylvania State University)

As the filament is deposited, the microscope camera detects the edges of the filament before applying an algorithm (named the “Robust Extrusion width Recognizer (REXR) algorithm) to measure the width. From the width, the volume can be determined, and when plotted against time, a volumetric flow rate is obtained.

The extrusion width measurement was found to be within 0.08 mm of caliper measurements and the determined flow rate was found to closely track that which was specified in the slicer software, meaning that the experiments successfully demonstrated this method of in-situ filament monitoring.

Video: Real-time Vision based Extrusion Width Measurement

Quality Control

Defective prints can cost time and waste materials, so development of process monitoring technologies is of vital importance to industries wanting to improve quality and repeatability while reducing costs and reworks.

Real time sensing of key process parameters not only improves the quality of the extruded materials, but can help to better understand the physics of the FFF process, which can in turn, help to build better models for prediction. One day we may even see Digital Twins of printing processes, all with sensors and algorithms at their core.

Hot! Apparently, the filament temperature drops some 20°C as soon as it hits the air outside the nozzle (Image credit: The Pennsylvania State University)

You can see the modified brass nozzle used in the experiment in the image above, along with some IR images of the filament extruding from the hot nozzle. 2 types of common filament (PLA and PETG) were used, and they used a robotic arm-type printer.

The researchers intend to continue to develop the process and state that improvements in the real time measurement rates of the deposition process need to be improved before the tech is ready for industry.

Given the demonstration of the technology working, it doesn’t seem like too much of a stretch to say we will see some form of this vision based approach to filament sensing in a printer near you in the not too distant future.

You can read the full paper, titled “Real-Time Sensing of Output Polymer Flow Temperature and Volumetric Flowrate in Fused Filament Fabrication Process’ (free access), at this link right here.

pulsar
Related Story
Dyze Design Releases Pulsar Pellet Extruder with 2.5kg/h Flow Rate
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

NAMI Partners with Lockheed Martin to 3D Print Aerospace Components in Saudi Arabia

National Additive Manufacturing and Innovation Company (NAMI) has entered into a collaboration agreement with Lockheed Martin to qualify and produce critical military and... read more »

Aerospace
NAMI Partners with Lockheed Martin to 3D Print Aerospace Components in Saudi Arabia

Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

The Fraunhofer Institute for Laser Technology ILT has partnered with powder manufacturer MacLean-Fogg and Toyota to develop a 3D printing solution for manufacturing... read more »

3D Printing Metal
Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

ASTM International Approves New Standard to Streamline AM Processes

ASTM International's additive manufacturing technologies committee (F42) has approved a new standard designed to help businesses navigate the procurement and delivery of 3D... read more »

News
ASTM International Approves New Standard to Streamline AM Processes

Trek Launches 3D Printed AirLoom Saddle Line

Trek has introduced its first 3D-printed saddle series, the Aeolus AirLoom, featuring what the company calls AirLoom lattice technology. The new design updates... read more »

News
Trek Launches 3D Printed AirLoom Saddle Line

QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

QuesTek Innovations has partnered with a global niobium producer to develop a high-temperature alloy designed for additive manufacturing. The project targets aerospace and... read more »

3D Printing Metal
QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

Autodesk Research and Additive Tectonics Develop 3D Printed Floor System with Alternative Materials

Autodesk Research has partnered with Additive Tectonics to develop a new approach to concrete floor construction using 3D printing technology. The collaboration combines... read more »

Construction

NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

The National Renewable Energy Laboratory (NREL) has installed a new laser-powered metal 3D printer at its Flatirons Campus to support marine energy device... read more »

3D Printing Metal
NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

Apple Adopts 3D Printing for Titanium USB-C Ports in New iPhone Air

Apple’s latest smartphone release marks a quiet but notable step in consumer electronics manufacturing: the company has confirmed that its new iPhone Air... read more »

3D Printing Metal
Apple Iphone 17 air

GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

GKN Aerospace announced the expansion of its Newington, Connecticut facility to include a new production line for additively manufactured Fan Case Mount Ring... read more »

Aerospace
GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

UltiMaker Launches Secure 3D Printing Line for Defense Applications

UltiMaker has introduced its Secure Line of 3D printing products specifically designed for defense and high-security environments. The initial lineup includes the UltiMaker... read more »

News
UltiMaker Launches Secure 3D Printing Line for Defense Applications

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing