3D Printing
News Videos Newsletter Contact us
Home / News / General Atomics Launch First 3D Printed Metal Parts
qidi

General Atomics Launch First 3D Printed Metal Parts

May 27, 2020

Drone manufacturer General Atomics Aeronautical Systems (GA-ASI) has teamed up with GE Additive to develop their first metal printed component. The whole process from development to first test flight of the component took just six months.

The part in question is a NACA inlet printed in Titanium Ti6Al4V and was fitted to a SkyGuardian drone, where it completed its first test flight in February 2020.

The inlet was printed using laser powder bed fusion techniques, and was part of a project aimed at demonstrating rapid development and manufacture of a flight worthy component in an aggressive timeline. Given that the component was designed and flown in just a few months, we can say the mission has been somewhat of a success, given the traditional timeframe of developing and qualifying aerospace components (which can take many years normally.)

“We know firsthand that the ability to secure buy-in from multiple cross-functional stakeholders is often critical to the success of any metal additive program within an organization,” said Lauren Thompson, operations project manager at GE Additive AddWorks.

“By adding GE’s prior experience and perspective to the GA-ASI’s internal leadership efforts, the joint team was able to reach the required project momentum in order to meet their milestone”

“Combining our deep domain expertise of metal additive and best practices from our own additive journey with GA-ASI’s equally deep domain expertise of their RPA applications allowed us to move quickly and work within the timelines we had set.”

Related Story
GE Additive to Consult GA-ASI Aeronautics on Metal Printing

More Parts

Since partnering with GE Additive, he GA-ASI AM team has identified a pool of suitable components for metal additive manufacturing that could prove economically beneficial if they switched from traditional manufacturing methods to AM.

The NACA inlet was selected as the first 3D-printed part for the SkyGuardian program, likely due to its geometry and lack of criticality.

Inlet Redux

The original inlet was manufactured from three parts of welded formed sheet metal Titanium. The revised version is printed from one piece on a GE Additive Concept Laser M2 3D printer, and has resulted in a cost reduction per part of more than 90%, weight reduction of over 30%, and tooling reduction of approximately 85%. Reducing the parts count in this manner also has additional benefits including reduced inventory, reduced assembly costs and faster turnaround time.

General Atomics skyguardian inlet redux 3d printed

The teams at General Atomics are so impressed with these engineering gains, they have begun to apply the AM workflows to the other NACA inlets in the range of products, and have also ordered a dozen of the GE Additive Concept Laser M2 3D series 5 machines.

“With the GE Additive AddWorks team, we were able not only to achieve our short term objective of qualifying the NACA inlet, but we also worked together on a number of additional application development and qualification efforts, which are continuing into 2020 and beyond,” said Elie Yehezkel, senior vice president of Advanced Manufacturing Technologies for GA-ASI.

“It is important that we remain at the leading edge of manufacturing technologies for our products and our customers. This acceleration has driven the maturation of our metal AM strategy and has also informed how we plan to approach a much wider application space already in the pipeline.”

Images & video courtesy of General Atomics

Related Story
Metal 3D Printing: An Overview of the Most Common Types
Designing for Additive Manufacturing DFAM
Related Story
Designing For Additive Manufacturing (DFAM)
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

The Royal Air Force has installed its first internally manufactured 3D printed component on an operational Typhoon fighter jet at RAF Coningsby this... read more »

Aerospace
RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Researchers from the University of California, Irvine and Japan's Okayama and Toho universities have published findings about how chitons develop their exceptionally hard... read more »

Materials
Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

A 3D-printed concrete bridge called Diamanti has been unveiled at the Time, Space, Existence exhibition in Venice as part of a research collaboration... read more »

Construction
3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing