3D Printing
News Videos Newsletter Contact us
Home / News / Innovative HyFAM Process Combines Additive and Formative Manufacturing
qidi

Innovative HyFAM Process Combines Additive and Formative Manufacturing

May 5, 2025

Johns Hopkins researchers have developed a new approach to 3D printing that combines the precision of additive manufacturing with the speed of traditional molding techniques. The method, called Hybrid Formative-Additive Manufacturing (HyFAM), was created by a team from the Department of Civil and Systems Engineering at the Whiting School of Engineering. Their research was recently published in Advanced Materials.

Innovative HyFAM Process Combines Additive and Formative Manufacturing
Image Credit: Johns Hopkins

“Instead of viewing additive and formative manufacturing as competing methods, we had the idea to marry the two,” said Jochen Mueller, CaSE assistant professor and principal study author. “By combining the benefits of each, we created a new production method that also overcomes some of their major drawbacks.”

HyFAM works by using a casting-like process for bulk sections where fine detail isn’t necessary, while employing traditional 3D printing techniques for detailed areas like outer surfaces. This combination can make production up to 10 to 20 times faster for objects with significant cast-like fill, and approximately twice as fast for detail-heavy prints, according to Mueller. The method helps avoid the inefficiency of printing every part when only certain sections require precision.

The team has tested HyFAM with various materials including silicone, ceramics, metals, epoxy, cement, clay, and chocolate. The process required careful control of material flow and consistency to ensure even filling. It also addresses common 3D printing problems by helping bond printed sections together uniformly.

Nathan Brown, a doctoral candidate and first author of the paper, explained the advantage: “Additive manufacturing offers significant detail, but when you use a small nozzle to achieve it, the entire process slows down. This becomes a real hinderance in parts with large internal features and widely-varying feature sizes.”

The researchers note that HyFAM is particularly useful for mass customization scenarios where objects have both detailed and non-detailed sections. While not ideal for highly intricate uniform objects, the team plans to expand the method’s capabilities by experimenting with different material combinations to broaden potential applications in industries from construction to soft robotics.

Source: engineering.jhu.edu

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Caltech Researchers Develop 3D Printing Method for Custom Metal Alloys

Scientists at Caltech have created a new technique that allows precise control over the composition and structure of metal alloys through 3D printing.... read more »

3D Printing Metal
Caltech Researchers Develop 3D Printing Method for Custom Metal Alloys

University of Maine Researchers Develop Method to Predict Strength of 3D-Printed Lightweight Components

Engineers at the University of Maine's Advanced Structures and Composites Center have developed a new method to predict the strength of lightweight 3D-printed... read more »

News
University of Maine Researchers Develop Method to Predict Strength of 3D-Printed Lightweight Components

Chinese Design Firm Uses 3D Concrete Printing for Community Playground in Shandong Province

XISUI Design has completed Boulder Park, a 13,000-square-meter community playground in Ji'nan, Shandong Province, China, that incorporates 3D concrete printing technology. The park... read more »

Construction

RMIT Develops Lower-Cost Titanium Alloy for 3D Printing Applications

Researchers at RMIT University have developed a new titanium alloy that costs 29% less to produce than standard titanium used in 3D printing.... read more »

3D Printing Metal
RMIT Develops Lower-Cost Titanium Alloy for 3D Printing Applications

Elegoo Launches Nexprint Open-Source Platform for 3D Model Sharing

Elegoo has announced the launch of Nexprint, an open-source platform that allows users to share and download 3D models. The platform is designed... read more »

News
Elegoo Launches Nexprint Open-Source Platform for 3D Model Sharing

IIT Indore Licenses Micro 3D Printing Technology to VFUse Metal

The Indian Institute of Technology Indore has licensed its micro-additive manufacturing technology to VFUse Metal Pvt. Ltd. The technology transfer represents part of... read more »

News
IIT Indore Licenses Micro 3D Printing Technology to VFUse Metal

3D Printing Company’s Coated Plastic Parts Pass Space Industry Outgassing Standards

Horizon Microtechnologies has announced that its coated plastic parts have successfully passed outgassing testing according to the ECSS-Q-ST-70-02C standard for space materials screening.... read more »

Aerospace
3D Printing Company's Coated Plastic Parts Pass Space Industry Outgassing Standards

EU-Funded Research Project Achieves Sixfold Productivity Increase in Metal 3D Printing

The EU-funded InShaPe research project has reported significant improvements in laser-based powder bed fusion of metals, achieving a sixfold increase in productivity and... read more »

3D Printing Metal
Industrial gas turbine part

Japanese Company 3D Prints House Using Soil-Based Materials

A Japanese company has completed construction of a 3D-printed house using soil-based materials instead of traditional concrete. The Lib Earth House Model B,... read more »

Construction
Japanese Company 3D Prints House Using Soil-Based Materials

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing