3D Printing
News Videos Newsletter Contact us
Home / News / Insights Gained into Keyhole Pore Formation
qidi

Insights Gained into Keyhole Pore Formation

May 31, 2022

Researchers at Heriot-Watt University working alongside collaborators from Carnegie-Mellon University and Argonne National Laboratory have published an article in Nature Communication detailing new findings into the formation of keyhole pores during LPBF printing of metals.

As we saw in this previous article which highlighted Argonne National Lab’s previous research into in-situ monitoring of keyhole cavity formation, the cavities are created when a surplus of laser energy is focused on a particular spot for too long, resulting in metal vaporizing and exiting the melt pool, leaving a small void (keyhole).

This results in porosity throughout the printed part which can result in stress concentrators, unpredictability in the part’s mechanical behavior under loads, and ultimately part failure.

The new research shows the actual formation of these evaporation plumes and visualizes all of the phases of matter as they undergo transformation from solid to melt pool to vapor. This is achieved with simultaneous in-situ synchrotron x-ray and schlieren imaging, which you can see in the picture below.

Time evolution of vapor plume formation
Time evolution of vapor plume formation and depression formation. (Image credit: Heriot-Watt University)

The image sequence above shows the time evolution of the depression formation and the vapor plume behavior under a stationary laser spot with a 1/e^2 diameter of 84 µm, for substrate only (no powder).

“During the additive manufacturing process, the application of a high-powered laser to metal will result in a small pool of liquid metal as the particles fuse together,” said Dr Ioannis Bitharas, a research associate at Heriot-Watt.

“During this stage, a minute amount of metal evaporates and presses against the liquid, creating a cavity at the center of the melt pool. This cavity, often referred to as a keyhole, can become unstable and collapse, leading to pores in the material. At the same time, the vapor shoots upwards from the keyhole, forming a plume, which interacts with the particles and can potentially disturb the spread layer.”

“Such events create tiny imperfections scattered throughout the component and, consequently, an unacceptable level of material porosity to many manufacturers. The images we have captured provide, for the first time, a complete picture of such interactions and we can now tell with certainty what is happening.”

Schlieren images of the Argon atmosphere
Schlieren images of the Argon atmosphere with convection and forced convection. (Image credit: Heriot-Watt)

The research showed the interaction between plume dynamics and the depression formation. In short, a steady plume results in a more predictable (and therefore controllable) depression and reduced porosity in the part, while the unsteady plume results in a more unstable melt pool resulting in unpredictable depression formation and higher porosity (and weaker parts).

This process can be kept stable by varying printer parameters such as energy density and speed, and the research also examines the effects of atmosphere (convection vs forced convection) on the plume.

“We believe that this work will enable the creation of improved process monitoring and analytic tools that identify and prevent defects in the additive manufacturing of metals, said Professor Andrew Moore, head of the Optical Diagnostics group in the Institute of Photonics and Quantum Sciences at Heriot-Watt.”

“Additionally, it will underpin a more predictive class of multiphysics models which include atmospheric effects and powder motion, allowing accurate a priori calculations of process maps.”

If you’d like to read the article in full (open access) you can read it over at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Oak Ridge National Laboratory has released a comprehensive dataset for its Peregrine software, which monitors and analyzes parts created through powder bed additive... read more »

News
Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Creality has announced the launch of the K2 and K2 Pro, two new additions to its high-end K series. Built on a rigid... read more »

3D Printers
Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Farsoon Europe GmbH and Stark Future have completed the KLINGA Project, a collaborative engineering initiative that produced more than 1,000 titanium parts using... read more »

3D Printing Metal
Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing