3D Printing
News Videos Newsletter Contact us
Home / Aerospace / Interview with Adam Jakus About Printing Extraterrestrial Terrain
revopoint

Interview with Adam Jakus About Printing Extraterrestrial Terrain

April 19, 2017

Yesterday, we posted about Northwestern University‘s work with various extraterrestrial regolith soil simulants. We decided to get in touch with the team behind the project for a follow-up on the state of this research and clarifications about certain elements of the methodology.

Our interviewee, Adam Jakus, has a Ph.D. in Materials Science and Engineering and is an expert on advanced material functional inks, ceramics, polymers and composites. We were able to contact Adam, as he is one of the lead researchers on the project, and he was kind enough to answer our questions.

Related Story
Scientists Develop Means for 3D Printing Extraterrestrial Materials

1) What types of printers are you using for processing the lunar soil and martian soil simulants? and how does the process differ from standard 3D painting?

[For] this work we used an EnvisionTEC 3D-BioPlotter to 3D-print (simple extrusion) the Lunar and Martian inks. However, the Lunar and Martian inks we developed could be 3D-printed on any extrusion-based 3D-printer. Our laboratory focuses on developing new materials for 3D-printing, and as such, there is nothing particularly special or unique about the 3D-printer (hardware) used.

It’s all about the materials design. Our laboratory invented the “3D-painting” process and approach, and thus, there technically is no standard 3D-painting. We have demonstrated the ability to use this process to create a very extensive variety of 3D-printable inks including metals and alloys, graphene (3D-Graphene) and carbon nanotubes, ceramics, biomaterials (Hyperelastic “Bone”), etc. (these new materials were previously reported on the in the media extensively). Thus, on one extrusion-based 3D-printer, many types of materials can be very quickly 3D-printed.

EnvisionTec 3D Bioplotter Mars Lunar Simulant soil

2) Are the printers using their stock parts as developed by a manufacturer on request or has your team modified them personally. If yes, then how so?

There is nothing special about the 3D-printer itself used in this work, and no modifications were made. It is a commercially available 3D-Bioplotter, but the inks could be used with any extrusion-based 3D-printer. The Lunar and Martian inks are an extension of the 3D-paintable materials we have previously developed and described.

3) I read that the simulants were made with a combination of commercially available materials. How did your team develop them (methodology, equipment) and in what ways do these materials differ from actual martian and lunar soil?

The Martian and Lunar Regolith simulant powders were commercially available, as are all the other components of the inks. We created the Lunar and Martian inks using our 3D-paint approach.

The simulants are the same the same simulant powders used by NASA and space researchers, and were developed specifically for extraterrestrial research. They are quite close in both composition and particle size/shape to those found on Mars and the Moon. The Martian regolith is rough, but rounded, due to weathering (Mars has an atmosphere and wind). The Lunar regolith is sharp and jagged (no weathering, and was produced by meteor and asteroid impacts). The simulants simulate these powders quite well.

4) What other hurdles are necessary before the technology is space-flight ready?

It is primarily dependent on the 3D-printing hardware, and for manufacturers to create additional space-flight ready extrusion based 3D printers (similar to the one already on the international Space Station).

A special thanks to Adam Jakus for answering all our questions. The research manuscript is available here.

Adam Jakus, PhD
Hartwell Postdoctoral Fellow Northwestern University | Ph.D. Materials Science and Engineering
Georgia Institute of Technology | B.S. and M.S. Materials Science and Engineering
Research Interests: Engineering and 3D-printing new metal, ceramic, polymer, composite, and advanced material functional inks. Developing new multi-material printing techniques. Design and implementation of 3D-printing enabled materials and devices for medical, structural, and energy applications.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

Thought3D just introduced two new products designed to meet evolving needs in additive manufacturing. The Magigoo Glide Kit and Magigoo Supergrip respond to... read more »

News
Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

3D Printed Electric Motorcycle by DAB Motors Inspired by Akira’s Iconic Bike

DAB Motors and Vita Veloce Team (VVT) have unveiled a custom electric motorcycle featuring 3D printed bodywork inspired by the iconic bike from... read more »

Automotive

3DEImention Launches Automated Depowdering and Part Extraction System for High-Volume 3D Printing

Three years ago, a client turned to Avner Dei, 3DEImention CEO, seeking a metal printer capable of 5,000 parts per month. While the... read more »

News
3DEImention Launches Automated Depowdering and Part Extraction System for High-Volume 3D Printing

Revopoint Trackit Launches on Kickstarter with Marker-Free 3D Scanning

3D models play a critical role across industries—from virtual reality to advanced manufacturing—but high costs, complex setup, and lengthy workflows often limit access... read more »

News
Revopoint Trackit Launches on Kickstarter with Marker-Free 3D Scanning

High School Student Develops Low-Cost 3D Printed Drone

Cooper Taylor, a 17-year-old student, has created a cost-effective vertical take-off and landing (VTOL) drone using 3D-printed components. Taylor's design addresses efficiency concerns... read more »

Aerospace
High School Student Develops Low-Cost 3D Printed Drone

3D Printed Flower-Shaped Amphitheater Blooms on Venice’s San Servolo Island

Mario Cucinella Architects (MCA) has unveiled a 3D printed amphitheater titled "A Flower in San Servolo" on Venice's San Servolo Island. The open-air... read more »

Construction
3D Printed Flower-Shaped Amphitheater Blooms on Venice's San Servolo Island

Lyten Unveils Motorsports Initiative for 3D Graphene Supermaterials in Racing

Lyten has announced the launch of Lyten Motorsports in partnership with INDYCAR Experience. The new venture aims to apply Lyten's 3D Graphene technology... read more »

Automotive
Lyten Unveils Motorsports Initiative for 3D Graphene Supermaterials in Racing

Peak Technology Acquires Jinxbot to Enhance Additive Manufacturing for Deep Tech OEMs

Peak Technology has acquired Jinxbot 3D Printing, expanding its additive manufacturing capabilities. The acquisition adds Jinxbot's high-mix, rapid-turn prototyping services to Peak's existing... read more »

News
Peak Technology Acquires Jinxbot to Enhance Additive Manufacturing for Deep Tech OEMs

Canadian Navy Extends Submarine Lifespan with 3D Printed Parts

Dalhousie University has partnered with Defence Research and Development Canada (DRDC) to address critical parts supply challenges for Canada's aging submarine fleet. The... read more »

Military

Hands-On Review: Revopoint MetroX 3D Scanner

Revopoint has recently released their professional 3D scanner, the “ Revopoint MetroX 3D Scanner”. We have spent a couple of months putting the... read more »

News
Hands-On Review: Revopoint MetroX 3D Scanner

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing