3D Printing
News Videos Newsletter Contact us
Home / Aerospace / Interview with Adam Jakus About Printing Extraterrestrial Terrain
qidi

Interview with Adam Jakus About Printing Extraterrestrial Terrain

April 19, 2017

Yesterday, we posted about Northwestern University‘s work with various extraterrestrial regolith soil simulants. We decided to get in touch with the team behind the project for a follow-up on the state of this research and clarifications about certain elements of the methodology.

Our interviewee, Adam Jakus, has a Ph.D. in Materials Science and Engineering and is an expert on advanced material functional inks, ceramics, polymers and composites. We were able to contact Adam, as he is one of the lead researchers on the project, and he was kind enough to answer our questions.

Related Story
Scientists Develop Means for 3D Printing Extraterrestrial Materials

1) What types of printers are you using for processing the lunar soil and martian soil simulants? and how does the process differ from standard 3D painting?

[For] this work we used an EnvisionTEC 3D-BioPlotter to 3D-print (simple extrusion) the Lunar and Martian inks. However, the Lunar and Martian inks we developed could be 3D-printed on any extrusion-based 3D-printer. Our laboratory focuses on developing new materials for 3D-printing, and as such, there is nothing particularly special or unique about the 3D-printer (hardware) used.

It’s all about the materials design. Our laboratory invented the “3D-painting” process and approach, and thus, there technically is no standard 3D-painting. We have demonstrated the ability to use this process to create a very extensive variety of 3D-printable inks including metals and alloys, graphene (3D-Graphene) and carbon nanotubes, ceramics, biomaterials (Hyperelastic “Bone”), etc. (these new materials were previously reported on the in the media extensively). Thus, on one extrusion-based 3D-printer, many types of materials can be very quickly 3D-printed.

EnvisionTec 3D Bioplotter Mars Lunar Simulant soil

2) Are the printers using their stock parts as developed by a manufacturer on request or has your team modified them personally. If yes, then how so?

There is nothing special about the 3D-printer itself used in this work, and no modifications were made. It is a commercially available 3D-Bioplotter, but the inks could be used with any extrusion-based 3D-printer. The Lunar and Martian inks are an extension of the 3D-paintable materials we have previously developed and described.

3) I read that the simulants were made with a combination of commercially available materials. How did your team develop them (methodology, equipment) and in what ways do these materials differ from actual martian and lunar soil?

The Martian and Lunar Regolith simulant powders were commercially available, as are all the other components of the inks. We created the Lunar and Martian inks using our 3D-paint approach.

The simulants are the same the same simulant powders used by NASA and space researchers, and were developed specifically for extraterrestrial research. They are quite close in both composition and particle size/shape to those found on Mars and the Moon. The Martian regolith is rough, but rounded, due to weathering (Mars has an atmosphere and wind). The Lunar regolith is sharp and jagged (no weathering, and was produced by meteor and asteroid impacts). The simulants simulate these powders quite well.

4) What other hurdles are necessary before the technology is space-flight ready?

It is primarily dependent on the 3D-printing hardware, and for manufacturers to create additional space-flight ready extrusion based 3D printers (similar to the one already on the international Space Station).

A special thanks to Adam Jakus for answering all our questions. The research manuscript is available here.

Adam Jakus, PhD
Hartwell Postdoctoral Fellow Northwestern University | Ph.D. Materials Science and Engineering
Georgia Institute of Technology | B.S. and M.S. Materials Science and Engineering
Research Interests: Engineering and 3D-printing new metal, ceramic, polymer, composite, and advanced material functional inks. Developing new multi-material printing techniques. Design and implementation of 3D-printing enabled materials and devices for medical, structural, and energy applications.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Nestlé Expands 3D Printing Operations for Manufacturing Parts Across UK Sites

Nestlé has implemented standardized 3D printing processes across its UK manufacturing facilities over the past year. The company uses a team of three... read more »

News
Nestlé Expands 3D Printing Operations for Manufacturing Parts Across UK Sites

Cornell Researchers Develop 3D Printing Method for Enhanced Superconductors

Cornell University researchers have developed a one-step 3D printing method that produces superconductors with improved properties. The research, published August 19 in Nature... read more »

News
Cornell Researchers Develop 3D Printing Method for Enhanced Superconductors

Scottish Maritime Project Shows Promise for 3D Printed Ship Components

A Scottish project using large-scale additive manufacturing for shipbuilding components has completed its second phase, demonstrating potential benefits for the maritime industry. The... read more »

News
Scottish Maritime Project Shows Promise for 3D Printed Ship Components

Navy Maintenance Center Uses 3D Printing to Replace Destroyer Pump Component at Fraction of Conventional Cost

The Southeast Regional Maintenance Center (SERMC) has successfully used 3D printing to manufacture a replacement cooling rotor for an Arleigh Burke-class guided missile... read more »

Military
Navy Maintenance Center Uses 3D Printing to Replace Destroyer Pump Component at Fraction of Conventional Cost

Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

British manufacturer Rapid Fusion has introduced "Bob," an AI-powered assistant designed to optimize operations for its large-format 3D printing systems. The company developed... read more »

News
Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Shenzhen-based 3D printer manufacturer Creality has submitted a prospectus to the Hong Kong Stock Exchange for a main board listing. The company began... read more »

News
Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Graphjet Technology has entered into a collaboration agreement with the Centre for Materials Engineering and Smart Manufacturing (MERCU) at Universiti Kebangsaan Malaysia (UKM).... read more »

News
Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Humtown drives US Manufacturing Comeback with Additive Sand Casting

Humtown Products, an Ohio-based company, is positioning itself to serve manufacturers looking to bring production back to the United States. The company specializes... read more »

News
Humtown drives US Manufacturing Comeback with Additive Sand Casting

Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Oak Ridge National Laboratory has released a comprehensive dataset for its Peregrine software, which monitors and analyzes parts created through powder bed additive... read more »

News
Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Creality has announced the launch of the K2 and K2 Pro, two new additions to its high-end K series. Built on a rigid... read more »

3D Printers
Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing