3D Printing
News Videos Newsletter Contact us
Home / News / Purdue Researchers Develop Innovative 3D Nanoprinting Technology for Large-Scale Applications
revopoint

Purdue Researchers Develop Innovative 3D Nanoprinting Technology for Large-Scale Applications

October 3, 2024

Researchers at Purdue University’s College of Engineering have made a significant breakthrough in 3D additive nanoprinting. Led by Liang Pan, a professor of mechanical engineering, the team has developed a patent-pending, single-photon 3D nanoprinting technology that allows for the creation of high-resolution nanostructures faster and at a much lower cost than traditional methods. This innovation is set to transform industries reliant on nanotechnology by enabling more efficient and affordable production of complex structures.

Purdue Researchers Develop Innovative 3D Nanoprinting Technology for Large-Scale Applications
Liang Pan, leading a team of researchers at Purdue University, has developed a 3D printing innovation that enables faster and more cost-effective production of high-resolution 3D nanostructures compared to traditional laser-based printing methods. (Image Credit: Jared Pike, Purdue University)

A Leap Forward in Nanoprinting

Traditional laser-based 3D nanoprinting, such as femtosecond laser two-photon polymerization, has long been used to fabricate intricate nanostructures. However, this technique has several drawbacks—it is expensive, slow, and requires high-power lasers, limiting its commercial viability in manufacturing. Purdue’s new technology overcomes these obstacles by eliminating the need for costly femtosecond lasers and single-point scanning processes.

“The technology uses less expensive light sources, such as a simple laser pointer, reducing tool costs by 10 to 100 times,” Pan explained. “The writing speed is exponentially faster for each beam, and we can further expand to parallel scanning with tens or even hundreds of beams.”

This single-photon approach significantly boosts throughput without compromising the resolution, making it a game-changer for various industries, from nanotechnology research and manufacturing to healthcare.

Advantages of Single-Photon 3D Nanoprinting

The technology developed by Pan’s team offers several advantages over traditional methods. It not only increases the production speed but also maintains high-resolution output, achieving structures as small as 120 nanometers using a low-cost diode laser. Additionally, the researchers demonstrated parallel nanoprinting by using an array of laser beams, paving the way for even larger-scale production.

By eliminating the need for high-power lasers and complex, time-consuming processes, Purdue’s single-photon method is positioned to make 3D nanoprinting more accessible and cost-effective for both industrial and research applications.

Applications and Future Development

Purdue’s 3D nanoprinting technology has a wide range of potential applications, including nanolithography, zero-stiffness microstructures, and thermal interface structures. These applications are crucial in sectors like electronics, advanced manufacturing, and medical devices.

Looking ahead, Pan’s team is focused on further refining the technology to increase scanning throughput and lower tool costs even further. They have already received two grants from the National Science Foundation to support their ongoing research and development efforts.

The Purdue Innovates Office of Technology Commercialization is actively seeking industry partners to help develop and commercialize the technology. For those interested, they can reach out to Parag Vasekar, business development and licensing manager, for more information on how to get involved.

Purdue’s Commitment to Innovation

This innovative work is part of Purdue University’s broader mission to lead in technological advancement. The Purdue Innovates Office of Technology Commercialization plays a vital role in bringing these forward-thinking developments to market, contributing to the university securing 290 U.S. and international patents in fiscal year 2024.

With this latest advancement in 3D nanoprinting, Purdue continues to expand the possibilities in additive manufacturing, providing solutions that have the potential to reshape industries dependent on nanotechnology.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

3D Printed Metal Molds Poised to Accelerate US Auto Manufacturing

Oak Ridge National Laboratory (ORNL) researchers have demonstrated that 3D-printed metal molds offer significant advantages for producing large composite components for automotive manufacturing.... read more »

Automotive

Auburn-based XO Armor Joins Montgomery TechLab’s Defense Accelerator Program

XO Armor, a company that specializes in on-site 3D printing of custom-fit protective orthotics, has been selected for the first cohort of Montgomery... read more »

News
Auburn-based XO Armor Joins Montgomery TechLab's Defense Accelerator Program

ASTM International Teams with Major Manufacturers to Create Additive Manufacturing Certification

ASTM International's Additive Manufacturing Center of Excellence (AM CoE) has introduced a new manufacturer certification program aimed at improving quality assurance and process... read more »

News
ASTM International Teams with Major Manufacturers to Create Additive Manufacturing Certification

Egypt to Boost Domestic Spare Parts Production with Additive Manufacturing

Egypt's Arab Organization for Industrialization (AOI) hosted a workshop on June 2nd, 2025, to advance the localization of industrial spare parts manufacturing using... read more »

News
Egypt to Boost Domestic Spare Parts Production with Additive Manufacturing

3D Printing Breakthrough Reduces Waste While Enabling Complex Designs

MIT engineers have developed a new 3D printing resin that forms two different types of solids depending on the light used. The material... read more »

Materials
3D Printing Breakthrough Reduces Waste While Enabling Complex Designs

Magnetic 3D Printed Pen Shows Promise for Parkinson’s Diagnosis

Researchers have developed a 3D-printed pen containing magnetic ink that may help identify Parkinson's disease through handwriting analysis. The device captures motion patterns... read more »

News

Deuter Introduces New Mountain Bike Pack with 3D Printed Spine Protection

German pack manufacturer Deuter has launched the Hiline, a new mountain bike hydration pack featuring 3D-printed spine protection technology. The pack is specifically... read more »

News
Deuter Introduces New Mountain Bike Pack with 3D Printed Spine Protection

UltiMaker Launches S6 3D Printer

UltiMaker has announced the release of the S6 3D printer, designed specifically for engineers, manufacturing teams, and maintenance crews. The new printer focuses... read more »

News
UltiMaker Launches S6 3D Printer

Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

Thought3D just introduced two new products designed to meet evolving needs in additive manufacturing. The Magigoo Glide Kit and Magigoo Supergrip respond to... read more »

News
Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

3D Printed Electric Motorcycle by DAB Motors Inspired by Akira’s Iconic Bike

DAB Motors and Vita Veloce Team (VVT) have unveiled a custom electric motorcycle featuring 3D printed bodywork inspired by the iconic bike from... read more »

Automotive

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing