3D Printing
News Videos Newsletter Contact us
Home / News / Researchers 3D Print Piezoelectric Energy Harvesters for Railway Monitoring
qidi

Researchers 3D Print Piezoelectric Energy Harvesters for Railway Monitoring

June 29, 2024

Railway monitoring systems face power supply challenges due to difficult access and maintenance. Piezoelectric energy harvesting offers an alternative by converting vibrations from trains into electrical energy.

Commonly, a bimorph cantilever beam is used, generating energy from vibrations within 3-100 Hz. This matches the frequencies induced by rail traffic, allowing it to power low-energy devices and sensors. However, energy production is limited to a narrow frequency band near its resonance, reducing output when off-resonance.

Researchers 3D Print Piezoelectric Energy Harvesters for Railway Monitoring
3D printed PAHT CF15 harvester. (Image Credit: Cámara-Molina et al)

To optimize this process, researchers have used 3D printing to develop methods to tune the resonance frequency of energy harvesters for increased performance. Specifically, they have designed and 3D printed a prototype of the harvester using PAHT CF15 material.

The harvester was tested on a bridge with vertical vibrations caused by passing trains. Optimal performance is achieved when tuned to the bridge’s fundamental vibration mode. Factors like train speed, bridge properties, and interactions with structures and soil introduce uncertainties, complicating frequency tuning.

Experimental validation confirmed the tuning process, with tests showing high energy levels around 40-55 Hz. The harvester’s performance was verified in the laboratory and under operating conditions, demonstrating effective energy collection from train-induced vibrations.

The research aims to estimate the optimal tuning frequency for maximum energy harvesting. A statistical approach was used, analyzing mechanical energy generated from train-induced bridge vibrations. The tuning frequency was statistically determined, ensuring peak energy follows a Gaussian distribution.

Overall, piezoelectric energy harvesting offers a viable power source for railway monitoring, with proper tuning significantly improving efficiency.

You can read the full research paper, titled “Design and optimisation of 3D-printed energy harvesters for railway bridges” at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

NAMI Partners with Lockheed Martin to 3D Print Aerospace Components in Saudi Arabia

National Additive Manufacturing and Innovation Company (NAMI) has entered into a collaboration agreement with Lockheed Martin to qualify and produce critical military and... read more »

Aerospace
NAMI Partners with Lockheed Martin to 3D Print Aerospace Components in Saudi Arabia

Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

The Fraunhofer Institute for Laser Technology ILT has partnered with powder manufacturer MacLean-Fogg and Toyota to develop a 3D printing solution for manufacturing... read more »

3D Printing Metal
Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

ASTM International Approves New Standard to Streamline AM Processes

ASTM International's additive manufacturing technologies committee (F42) has approved a new standard designed to help businesses navigate the procurement and delivery of 3D... read more »

News
ASTM International Approves New Standard to Streamline AM Processes

Trek Launches 3D Printed AirLoom Saddle Line

Trek has introduced its first 3D-printed saddle series, the Aeolus AirLoom, featuring what the company calls AirLoom lattice technology. The new design updates... read more »

News
Trek Launches 3D Printed AirLoom Saddle Line

QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

QuesTek Innovations has partnered with a global niobium producer to develop a high-temperature alloy designed for additive manufacturing. The project targets aerospace and... read more »

3D Printing Metal
QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

Autodesk Research and Additive Tectonics Develop 3D Printed Floor System with Alternative Materials

Autodesk Research has partnered with Additive Tectonics to develop a new approach to concrete floor construction using 3D printing technology. The collaboration combines... read more »

Construction

NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

The National Renewable Energy Laboratory (NREL) has installed a new laser-powered metal 3D printer at its Flatirons Campus to support marine energy device... read more »

3D Printing Metal
NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

Apple Adopts 3D Printing for Titanium USB-C Ports in New iPhone Air

Apple’s latest smartphone release marks a quiet but notable step in consumer electronics manufacturing: the company has confirmed that its new iPhone Air... read more »

3D Printing Metal
Apple Iphone 17 air

GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

GKN Aerospace announced the expansion of its Newington, Connecticut facility to include a new production line for additively manufactured Fan Case Mount Ring... read more »

Aerospace
GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

UltiMaker Launches Secure 3D Printing Line for Defense Applications

UltiMaker has introduced its Secure Line of 3D printing products specifically designed for defense and high-security environments. The initial lineup includes the UltiMaker... read more »

News
UltiMaker Launches Secure 3D Printing Line for Defense Applications

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing