3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Bioprint Brain Tissue Creating Functional Neural Network
qidi

Researchers Bioprint Brain Tissue Creating Functional Neural Network

October 20, 2018

Researchers from Tufts University have created a functional neural network of brain cells. The ability to bioprint brain tissue will allow them to experiment with treatments for various neural disorders like Parkinson’s and Alzheimer’s to create potential cures.

With a combination of 3D printing and stem cell research, the scientists used pluripotent stem cells (iPSCs) to create the neural networks. With this ability they were able to avoid the downsides of standard neural sample gathering. Ordinarily, researchers would gather the cells from dead patients, which limits the sample size and quality.

See-Shell: Printed Transparent Skulls Aid in Brain Research
Related Story
See-Shell: 3D Printed Transparent Skulls Aid in Brain Research

This also allowed them to elaborate on previous research involving laboratory mice. Overall, they managed to get promising results. The researchers took stem cells from healthy subjects as well as those suffering from Parkinson’s and Alzheimer’s patients. The group them generated a tissue model that would allow them to observe the levels of gene growth and expression while they assess the possibilities of “generating patient-derived brain tissue models”. The research involves neurons and astroglial cells, interacting in a 3D environment, so it’s more realistic. They exhibit spontaneous neural activity confirmable through electrophysiological recordings and calcium imaging over nine months.

Stem Cell Models

“We found the right conditions to get the iPSCs to differentiate into a number of different neural subtypes, as well as astrocytes that support the growing neural networks,” explains Tufts University biomedical engineer and study co-author David L. Kaplan. “The silk-collagen scaffolds provide the right environment to produce cells with the genetic signatures and electrical signaling found in native neuronal tissues.”

The researchers also tout the versatility the system provides. The researchers can essentially manipulate the cultures to support a variety of experimental applications. They plan to study network development, maturation, plasticity, degeneration and much more. Thus, they can derive targets for pharmaceutical research and drug development.

Related Story
Bioprinting Ligaments With Patient’s Own Cells Now Possible

The research could shed a light on various incurable diseases like Huntington’s and those listed earlier. With an in-depth understanding of neural pathway development during the formation of these particular disorders, the researchers could develop pre-emptive solutions and diagnostic guidelines as opposed to those methods that attempt solutions after the fact. Overall, the research provides crucial insight into the unexplored facets of neurobiology.

Featured images courtesy of Tufts University.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

University of Pennsylvania Researchers Develop Carbon-Capturing Concrete

Researchers at the University of Pennsylvania have created a new type of concrete that captures carbon dioxide while maintaining structural integrity. The material... read more »

Construction

Dutch 3D Printing Startup Novenda Technologies Raises $6.1M for Dental Manufacturing Platform

Dutch startup Novenda Technologies has secured $6.1 million in Series A funding to advance its multi-material 3D printing platform for dental products. The... read more »

Dental

Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Singapore-based startup Unigons has launched a limited collection of 3D-printed Merlion figurines made from recycled plastic bottles. The company produced 60 pieces of... read more »

News
Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Designer Liam de la Bedoyere has developed the Dog Hut Side Table, a piece of furniture that combines a resting space for dogs... read more »

News
Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Scientists 3D Print Solar-Powered Sponge for Seawater Desalination

Researchers have developed a 3D-printed aerogel material that uses sunlight to convert seawater into drinking water. The sponge-like structure contains microscopic vertical channels... read more »

News

Revopoint Launches Major Prime Event 2025 Sale with Up to 40% Off 3D Scanners and Accessories

Revopoint is kicking off its Prime Event 2025 with a series of major discounts on its range of professional 3D scanners and accessories.... read more »

News

Turkish Companies Test 3D Printed Component for Armored Vehicles

MetalWorm and Nurol Makina, both based in Ankara, Turkey, have completed testing of an armored vehicle component manufactured using Directed Energy Deposition (DED)... read more »

3D Printing Metal
Turkish Companies Test 3D Printed Component for Armored Vehicles

McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

TissueTinker, a McGill University spinout company, has developed 3D bioprinting technology to create miniaturized tumor models for cancer drug testing. The company recently... read more »

Medical
McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

The University of Twente has received €13.6 million in funding from the 2024 NWA ORC program to lead two research projects focused on... read more »

News
University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing