3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Print Tough Photopolymers Using Advanced Light Curing
qidi

Researchers Print Tough Photopolymers Using Advanced Light Curing

July 6, 2018

Researchers at the Technical University of Vienna have just cracked the code on advanced light curing. The team has developed a method for printing tough photopolymers using EVS (ester‐activated vinyl sulfonate ester). As a result, they claim the eventual material is far more suitable for 3D printing, biomedicine and microelectronics.

Robert Liska is leading the research team. He has long been working with polymers, 3D printing and light-curing. His team’s work here presents a new way of decreasing chain link lengths during the polymerization process, which results in fewer cracks and precise shrinkage in the inner structure. The addition of EVS allows for the usage of methacrylate-based photopolymers without inhibiting the curing process.

3d-printed-silicone-hd-featured-600
Related Story
An Overview Of Silicone 3D Printing

The researcher printed two versions of a scaffold: one with EVS and a control scaffold without it. As one might imagine, the former was solid and the latter much more brittle. The material had individual layers with a thickness of 50 µm and was homogenous, solid but elastic and impact resistant with high tensile strength.

Better Photopolymerisation

advanced light curing

While the new method also works in a similar manner to regular light-curing, the presence of EVS makes a crucial difference. Light-curing operates with radical chain polymerization, using light to split an initiators into radicals. These then react to the monomer’s double bonds in the vinyl group (for example C=C) and form a new radical. The new radical becomes the starting point of a polymer network that builds by attacking other monomers.

However, longer irradiation phases lead to weaker bonds that are longer but develop shrinkage cracks. The EVS, on the other hand, acts as a buffer, which takes on the attacks instead of the monomers. As a result, it forms an intermediate and terminates the change making it more solid. The shorter chains remain mobile longer and thus reduce the danger of shrinkage cracks during curing significantly.

The researchers measured the characteristics of the new photopolymers with laser flash photolysis, theoretical calculations, and photoreactor studies. They found that the final photopolymer networks exhibited improved mechanical performance. Other chain transfer agents had significant downsides compared to EVS. Namely, they inhibit polymerization whereas EVS doesn’t because it forms a stable intermediate.

The abstract for the study is available here. The original study can be found in the journal Angewandte Chemie.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

The Royal Air Force has installed its first internally manufactured 3D printed component on an operational Typhoon fighter jet at RAF Coningsby this... read more »

Aerospace
RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Researchers from the University of California, Irvine and Japan's Okayama and Toho universities have published findings about how chitons develop their exceptionally hard... read more »

Materials
Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

A 3D-printed concrete bridge called Diamanti has been unveiled at the Time, Space, Existence exhibition in Venice as part of a research collaboration... read more »

Construction
3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

Caltech Researchers Develop 3D Printing Method for Custom Metal Alloys

Scientists at Caltech have created a new technique that allows precise control over the composition and structure of metal alloys through 3D printing.... read more »

3D Printing Metal
Caltech Researchers Develop 3D Printing Method for Custom Metal Alloys

University of Maine Researchers Develop Method to Predict Strength of 3D-Printed Lightweight Components

Engineers at the University of Maine's Advanced Structures and Composites Center have developed a new method to predict the strength of lightweight 3D-printed... read more »

News
University of Maine Researchers Develop Method to Predict Strength of 3D-Printed Lightweight Components

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing