3D Printing
News Videos Newsletter Contact us
Home / News / Using AI and AM for Organoid Production
revopoint

Using AI and AM for Organoid Production

October 15, 2022

Living organs for medical experimentation are pretty hard to come by, on account of human beings actually using them on a day to day basis. To rectify this, the concept of the organoid has been developed.

Functional Organ Models

Organoids are mini-versions of organs that replicate various biological functions, and they are grown in-vitro, in a petri dish or test tube or some other kind of container outside of the normal environment of the body.

Manufacturing of organoids has had its limitations however, as it has been difficult to demonstrate consistent and robust extraction of mature organoids from renewable cells.

This could be about to change though, thanks to a team of researchers from the Swanson School of Engineering at the University of Pittsburgh who have been awarded funding to further research into organoid production using AI and 3D printing.

organoids
In-vitro organoids. (Image credit: University of Pittsburgh)

The team of researchers, led by principal investigator Ipsita Banerjee, have been awarded $500,000 by the National Science Foundation to utilize artificial intelligence to accelerate the development of organoids, which has traditionally been heavily based on a trial-and-error approach. The team is multi-disciplinary and comes from various institutes at the University of Pittsburgh, the Allegheny Health Network, and Duquesne University.

New Method

Usually, organoids are created using a chemistry-based experimental approach, but the new method involves mechano-transduction pathways, or the process in which cells respond to mechanical stimuli, to regulate manufacturing while also exploiting cytoskeletal rearrangements that are part of the organoid phenotype.

For those who do not have a background in cellular biology, mechano-transduction is any of various mechanisms by which cells convert mechanical stimulus into electrochemical activity.

In this case, the mechano-transduction will be controlled by bioprinting the organoid phenotype, while machine learning models will identify signature cytoskeletal states associated with the phenotype. The AI will assist with accelerating development and will enhance accuracy in predictions of organoid behavior for further research.

“Our vision is to enable organoid technology to finally realize its potential in clinical research and drug development,” said Banerjee.

“This breakthrough research will benefit society and the healthcare system at large by creating a more efficient, effective and sustainable way to design these structures.”

organoid
Non-printed intestinal organoid. (Image credit: Meritxell Huch, PLOS Biology journal) <a href="http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002149, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=40325751" target="_blanc" rel="noopener">By Meritxell Huch</a>

The printed organoids will be used to conduct complex research on human tissue physiology, genetic diseases, organ-specific infectious diseases and cancer.

Organoids can be used for replicating functions of almost any organ, be it via the production of lung, mammary, liver, stomach, pancreas, and even cerebral organoids.

“Central to our goal of organoid manufacturing is the integration of bioprinting and artificial intelligence to enable automated and non-invasive learning of different types of organoids,” said Banerjee.

“Bioprinting also will enable us to scale up the production of these structures in quantity and quality over time, without the restrictions we currently face using traditional methods.”

The research will provide trainees with multidisciplinary skill sets, encompassing bioprinting, organoid engineering, imaging, and AI methods. The funding has been awarded as part of the National Science Foundation’s Future Manufacturing program.

nasa vascular challenge
Related Story
Two Teams Win NASA’s Vascular Tissue Challenge Using 3D Printing
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Auburn-based XO Armor Joins Montgomery TechLab’s Defense Accelerator Program

XO Armor, a company that specializes in on-site 3D printing of custom-fit protective orthotics, has been selected for the first cohort of Montgomery... read more »

News
Auburn-based XO Armor Joins Montgomery TechLab's Defense Accelerator Program

ASTM International Teams with Major Manufacturers to Create Additive Manufacturing Certification

ASTM International's Additive Manufacturing Center of Excellence (AM CoE) has introduced a new manufacturer certification program aimed at improving quality assurance and process... read more »

News
ASTM International Teams with Major Manufacturers to Create Additive Manufacturing Certification

Egypt to Boost Domestic Spare Parts Production with Additive Manufacturing

Egypt's Arab Organization for Industrialization (AOI) hosted a workshop on June 2nd, 2025, to advance the localization of industrial spare parts manufacturing using... read more »

News
Egypt to Boost Domestic Spare Parts Production with Additive Manufacturing

3D Printing Breakthrough Reduces Waste While Enabling Complex Designs

MIT engineers have developed a new 3D printing resin that forms two different types of solids depending on the light used. The material... read more »

Materials
3D Printing Breakthrough Reduces Waste While Enabling Complex Designs

Magnetic 3D Printed Pen Shows Promise for Parkinson’s Diagnosis

Researchers have developed a 3D-printed pen containing magnetic ink that may help identify Parkinson's disease through handwriting analysis. The device captures motion patterns... read more »

News

Deuter Introduces New Mountain Bike Pack with 3D Printed Spine Protection

German pack manufacturer Deuter has launched the Hiline, a new mountain bike hydration pack featuring 3D-printed spine protection technology. The pack is specifically... read more »

News
Deuter Introduces New Mountain Bike Pack with 3D Printed Spine Protection

UltiMaker Launches S6 3D Printer

UltiMaker has announced the release of the S6 3D printer, designed specifically for engineers, manufacturing teams, and maintenance crews. The new printer focuses... read more »

News
UltiMaker Launches S6 3D Printer

Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

Thought3D just introduced two new products designed to meet evolving needs in additive manufacturing. The Magigoo Glide Kit and Magigoo Supergrip respond to... read more »

News
Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

3D Printed Electric Motorcycle by DAB Motors Inspired by Akira’s Iconic Bike

DAB Motors and Vita Veloce Team (VVT) have unveiled a custom electric motorcycle featuring 3D printed bodywork inspired by the iconic bike from... read more »

Automotive

3DEImention Launches Automated Depowdering and Part Extraction System for High-Volume 3D Printing

Three years ago, a client turned to Avner Dei, 3DEImention CEO, seeking a metal printer capable of 5,000 parts per month. While the... read more »

News
3DEImention Launches Automated Depowdering and Part Extraction System for High-Volume 3D Printing

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing