3D Printing
News Videos Newsletter Contact us
Home / Use Cases / Electrically Conductive Polymer Composites for 3D Printing
qidi

Electrically Conductive Polymer Composites for 3D Printing

June 25, 2020

Last week we took a look at ESD safe materials for 3D printing. These are materials that are safe against electrostatic discharge, and have uses largely in electronics manufacturing.

This article, we will look at polymer composites with lower surface resistivity, in other words, electrically conductive 3D printing feedstocks.

Conductive materials have a surface resistivity of less than 1 x 10 5 Ω/ sq. This is compared to dissivative (ESD) materials which lie in the range of 1 x 10 5 Ω/ sq to 1 x10 11 Ω/ sq.

Conductors allow electricity to flow, and so have a bunch of potential uses, ranging from 3D printed circuits, wearable tech and maybe even one day, conductive substrates for electroplating.

Here are a few options for you, depending on what type of additive manufacturing process you are using.

Extruded Materials

For a while, filaments have been available in conductive form. Similar to ESD materials, conductivity generally tends to be manipulated by addition of some form of carbon to the feedstock during filament manufacture.

There are a lot of smaller companies offering these conductive filaments, yet strangely we don’t see much from the larger companies.

Fans of tougher thermoplastics such as ABS, TPU and PC will be pleased to know there are plenty of options for conductive variants of this polymer. A google search of the term “conductive X filament” (with “X” being your thermoplastic of choice) will yield a fairly huge selection to choose from.

Sintered Materials

Anyone with access to a SLS machine will be pleased to hear that there are options available (and in development) to those who enjoy sintering things.

There is currently research underway into addition of metallic fillers such as copper and aluminium also.

There are a variety of methods involved in manufacturing electrically conductive SLS materials. Many involve the mixing of carbon into the feedstock, while others focus on actually coating the actual particles with a conductive filler, as you can see in the image below.

carbon nanotubes powder particles
The graphic above shows the addition of carbon nanotubes to the surface of the powder particles. Image credit: Materials & Design Journal

A lot of research is focused on the shape and size of the additive particles (for example spherical vs. flakes), to determine the optimum parameters for successful bonding and increased electrical conductivity.

Photopolymers

Similar to the ESD materials of last week, the selection of conductive resins is smaller than the extrusion & sintering feedstocks. Last week we pointed out that mixing carbon particles into a resin can result in the contents settling, which can require constant mixing immediately before printing.

This is one possible explanation for the small selection of these resins available.

While there aren’t many options for SLA/DLP printing conductive materials available commercially, conductive resins are being researched by various universities around the world, so there is potential for the market to grow, once manufacturers iron out the creases, whatever they may be.

This team from Yeungnam University, South Korea, for example, has manufactured a Polyacrylate Resin Solution with Polyaniline Nanofiber and Graphene additives, for improved conductivity.

Another team, from Georgia Institute of Technology and Xi’an Jiotong University, has mixed multi-walled carbon nanotubes (MWCT) with resins and demonstrated that they show conductivity. In fact, these research resins have been shown to be very useful indeed, having been shown to be useful for electrically activated shape memory composites.

Electrically activated shape memory polymers
Electrically activated shape memory polymers. Image credit: Georgia Institute of Technology

Final Thoughts

So, those are basically your options where it comes to conductive polymer materials. Most products involve the addition of some form of carbon (typically graphene) to change the surface resistivity, but we are seeing researchers adding metals into SLS feedstocks to enhance conductivity.

Of course, if you want something truly conductive, you will be better off sticking with metal materials. Plastics are great at insulating, and not so bad at ESD protection, but for conductivity, they aren’t so great.

It’s worth remembering that while a conductive polymer may be 10^10 times more conductive than a non-conducting filament, it is still 10^10 times LESS conductive than copper.

So bear that in mind when buying a conductive polymer material, and if in doubt…always read the datasheet.

Related Story
ESD Safe Materials for 3D Printing
thermally conductive polymer materials for 3d printing
Related Story
Thermally Conductive Polymer Materials for 3D Printing
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Researchers at the University of Cambridge's Center for Industrial Photonics have developed a new additive manufacturing technique called laser-assisted cold spray (LACS). The... read more »

3D Printing Metal
Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Titomic Netherlands Secures Strategic Funding to Advance Cold Spray 3D Printing Technology

Titomic Limited, an Australian company specializing in cold spray additive manufacturing, has received €800,000 in funding from the Netherlands' 3D Print Kompas program.... read more »

3D Printing Metal
Titomic Netherlands Secures Strategic Funding to Advance Cold Spray 3D Printing Technology

3D-Printed Insects Help Scientists Map the Limits of Mimicry in Nature

Researchers at the University of Nottingham have developed a method to 3D print life-sized, color-accurate insect models for biological research. The team, led... read more »

Environmental

University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

Researchers at the University of Hong Kong (HKU) are working to combine 3D-printed respiratory tissue with lab-grown organoids to create functional airways for... read more »

Bioprinting
University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-sumer Flexibility

SHINING 3D has launched its newest flagship 3D scanner, the EinScan Rigil — touted as the world’s first 3D scanner featuring Tri-Mode operation... read more »

News
SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-Level Flexibility

ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

ETH Zurich students have completed a 3D-printed ice cream shop in the Swiss Alpine village of Mulegns. The project, called Gelateria, was designed... read more »

Construction
ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

Hugo Launches 3D Printed Loafers with Zellerfeld

Hugo, the younger brand under Hugo Boss, has partnered with 3D printing company Zellerfeld to create a fully 3D-printed loafer. The shoe is... read more »

Fashion
Hugo Launches 3D Printed Loafers with Zellerfeld

3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

Researchers at the University of Texas at Austin have developed a 3D printing method that can create objects with both soft and hard... read more »

News
3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Students at Queen's University Belfast have developed what they describe as Ireland's first student-built liquid rocket engine. The Kelvin Mk.1, named after Belfast-born... read more »

3D Printing Metal
LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing