3D Printing
News Videos Newsletter Contact us
Home / Automotive / DOE Funds Automotive Industry Printing for Sensors and Fault Detection
qidi

DOE Funds Automotive Industry Printing for Sensors and Fault Detection

October 27, 2020

University of North Texas has just received a couple of Department of Energy (DOE) grants to push forward their ongoing research into 3D printed automotive structures. The first grant covers embedded sensors and the second covers a means for ultrasonic defect-detection in automotive 3D printing.

Sensors

The first grant (1.5 million USD) announced by the university covers 3 years of research and will be conducted at the UNT Center for Agile and Adaptive Additive Manufacturing (CAAAM) with the assistance of DOE scientists from the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory. ORNL have been very proactive in 3D printing lately, especially in the domain of nuclear engineering.

The funding will further development into the fabrication of a lightweight, 3D printed carbon fiber composite material equipped with embedded sensors for use in car structures.

Researchers at CAAAM
Researchers at CAAAM (Image Credit: CAAAM)

The team will assess various materials which can be embedded with flexible sensors during printing. These sensors will enable real time monitoring of the structures, wherever they may be on the vehicle. The team is looking at using this technology in the main vehicle structure, which they say can be manufactured with additive manufacturing, as well as other structures such as tyres and fuel tanks.

This will, in principle, allow a driver to receive up-to-date information on the health of their tyres or the quantity of fuel remaining in the tank.

“Once we have developed and successfully tested materials, we can provide stronger, safer and more lightweight options for automotive additive manufacturing,” said Yijie Jiang, an assistant professor at UNT’s Department of Mechanical Engineering.

“Readily available, proven materials will provide opportunities to lower costs and advance the industry.”

Ultrasonic Quality Control

The second grant (1 million USD), which was announced by the university this week, covers research into ultrasonic defect-detection of the microstructure of 3D printed automotive components.

“We’re going to use ultrasonic technology to monitor each part in real time and determine if there’s a defect,” said Professor Haifeng Zhang, who is co-principal investigator on the project at the UNT Department of Mechanical Engineering.

“By detecting a possible defect earlier in the process, we could revise the manufacturing parameters sooner, saving time and money.”

The in-situ monitoring of AM part quality during manufacture is a hot topic of research at the moment, and is a fairly critical step in realising a fully Smart Factory, as promised by Industry 4.0.

figure 4 nokia mini factory featured
Related Story
3D Systems Figure 4 Powers Nokia’s Factory in a Box

“Additive manufacturing has potential to revolutionize manufacturing operations and significantly disrupt the conventional handling of new and replacement parts in all industries, including nuclear, which is what much of my research is in,” said Zhang.

The DOE has already been dedicating their supercomputer resources to developing AI-assisted in-situ fault detection for titanium parts, as seen in this article, albeit with X-rays rather than ultrasonic sensors.

Ultrasonic sensors are certainly more accessible than X-ray sources, and systems like this may even find themselves on the factory floor, rather than exclusively in government research facilities.

You can see some examples of the kind of work CAAAM is doing in the video below.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

The Fraunhofer Institute for Laser Technology ILT has partnered with powder manufacturer MacLean-Fogg and Toyota to develop a 3D printing solution for manufacturing... read more »

3D Printing Metal
Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

ASTM International Approves New Standard to Streamline AM Processes

ASTM International's additive manufacturing technologies committee (F42) has approved a new standard designed to help businesses navigate the procurement and delivery of 3D... read more »

News
ASTM International Approves New Standard to Streamline AM Processes

Trek Launches 3D Printed AirLoom Saddle Line

Trek has introduced its first 3D-printed saddle series, the Aeolus AirLoom, featuring what the company calls AirLoom lattice technology. The new design updates... read more »

News
Trek Launches 3D Printed AirLoom Saddle Line

QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

QuesTek Innovations has partnered with a global niobium producer to develop a high-temperature alloy designed for additive manufacturing. The project targets aerospace and... read more »

3D Printing Metal
QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

Autodesk Research and Additive Tectonics Develop 3D Printed Floor System with Alternative Materials

Autodesk Research has partnered with Additive Tectonics to develop a new approach to concrete floor construction using 3D printing technology. The collaboration combines... read more »

Construction

NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

The National Renewable Energy Laboratory (NREL) has installed a new laser-powered metal 3D printer at its Flatirons Campus to support marine energy device... read more »

3D Printing Metal
NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

Apple Adopts 3D Printing for Titanium USB-C Ports in New iPhone Air

Apple’s latest smartphone release marks a quiet but notable step in consumer electronics manufacturing: the company has confirmed that its new iPhone Air... read more »

3D Printing Metal
Apple Iphone 17 air

GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

GKN Aerospace announced the expansion of its Newington, Connecticut facility to include a new production line for additively manufactured Fan Case Mount Ring... read more »

Aerospace
GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

UltiMaker Launches Secure 3D Printing Line for Defense Applications

UltiMaker has introduced its Secure Line of 3D printing products specifically designed for defense and high-security environments. The initial lineup includes the UltiMaker... read more »

News
UltiMaker Launches Secure 3D Printing Line for Defense Applications

Digital Manufacturing Centre Delivers 90kg 3D Printed Military Vehicle Component

The Digital Manufacturing Centre (DMC) has completed production of its largest additive manufacturing metal component to date - a 90kg suspension and differential... read more »

3D Printing Metal
Digital Manufacturing Centre Delivers 90kg 3D Printed Military Vehicle Component

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing