3D Printing
News Videos Newsletter Contact us
Home / 3D Printing Metal / NASA uses Blown Powder Method to Scale up Rockets
qidi

NASA uses Blown Powder Method to Scale up Rockets

November 3, 2020

We have taken a look at how the private sector are using additive manufacturing to build rocket engines in this previous article. In that example, the engineers use powder bed fusion for printing their small (30cm diameter) dual-alloy rocket nozzles.

NASA on the other hand have been experimenting not only with powder bed fusion but also with blown powder directed energy deposition, as part of their Rapid Analysis and Manufacturing Propulsion Technology (RAMPT) project.

The RAMPT project is funded by NASA’s Game Changing Development program and includes partners from across the agency such as Marshall Space Flight Center, Glenn Research Center and Ames Research Center as well as from industry and academia.

Previously the NASA team had experimented with powder bed fusion for manufacturing their dual-alloy, composite overwrapped engine assemblies at a smaller scale, but thanks to Direct Energy Deposition (DED) they have been able to scale up the size of their builds having printed a rocket engine measuring 40 inches in diameter and standing 38 inches tall, with fully integrated cooling channels.

Traditionally, a rocket assembly of this complexity would take a year to manufacture via normal welding methods. But by integrating the individual parts into one print, they were able to reduce the build time to just 30 days.

And Boeing thinks that they may be able to go even bigger than 40 inches, suggesting that this method could be used to print the Space Launch System engines.

The technology is enabling metal printing of a larger scale that was previously unattainable to NASA. (Image credit: NASA)

Directed Energy Deposition

Blown powder directed energy deposition is also known as Direct Energy Deposition (DED), and works by blasting powder out of a nozzle with an inert gas, directly into the path of a laser which is mounted in the same printer head as the gas/powder nozzles. The resulting meltpool is steered along the toolpath by the printer’s CNC system, and a part is formed layerwise.

The image below shows the arrangement of powder/gas feed tubes arranged around the laser and nozzle.

DED print head
DED print head. (Image credit: NASA)<br />

As seen in the cutaway image below, the powders are fired in a steam of gas at the previously deposited matter, where the powder streams are met with a laser and fuses the powder particles to the target.

DED print head 2
DED print head cutaway showing laser and powder/gas stream (Image credit: NASA)

“This technology advancement is significant, as it allows us to produce the most difficult and expensive rocket engine parts for a lower price tag than in the past,” said Drew Hope, manager of NASA’s Game Changing Development Program.

“It will allow companies within and outside of the aerospace industry to do the same and apply this manufacturing technology to the medical, transportation, and infrastructure industries”, added Hope.

Boeing & DED

One such company is Boeing, who are undoubtedly excited at the prospect of cutting their manufacturing costs on the already over budget Space Launch System project.

“Producing channel wall nozzles and other components using this new type of additive manufacturing would enable us to make the SLS (Space Launch System) engines at the scale required with a reduced schedule and reduced cost,” said Johnny Heflin, Liquid Engines Office manager for the Space Launch System program.

RAMPT and the Space Launch System team are currently investigating development of a 5 ft diameter variant for qualification testing, which presumably will serve as a roadmap to a possible replacement for the RL-10 engines on the upper stages (which measure around 7ft in diameter).

Related Story
ESA Tests ALM Rocket Engine
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

The Fraunhofer Institute for Laser Technology ILT has partnered with powder manufacturer MacLean-Fogg and Toyota to develop a 3D printing solution for manufacturing... read more »

3D Printing Metal
Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

ASTM International Approves New Standard to Streamline AM Processes

ASTM International's additive manufacturing technologies committee (F42) has approved a new standard designed to help businesses navigate the procurement and delivery of 3D... read more »

News
ASTM International Approves New Standard to Streamline AM Processes

Trek Launches 3D Printed AirLoom Saddle Line

Trek has introduced its first 3D-printed saddle series, the Aeolus AirLoom, featuring what the company calls AirLoom lattice technology. The new design updates... read more »

News
Trek Launches 3D Printed AirLoom Saddle Line

QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

QuesTek Innovations has partnered with a global niobium producer to develop a high-temperature alloy designed for additive manufacturing. The project targets aerospace and... read more »

3D Printing Metal
QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

Autodesk Research and Additive Tectonics Develop 3D Printed Floor System with Alternative Materials

Autodesk Research has partnered with Additive Tectonics to develop a new approach to concrete floor construction using 3D printing technology. The collaboration combines... read more »

Construction

NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

The National Renewable Energy Laboratory (NREL) has installed a new laser-powered metal 3D printer at its Flatirons Campus to support marine energy device... read more »

3D Printing Metal
NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

Apple Adopts 3D Printing for Titanium USB-C Ports in New iPhone Air

Apple’s latest smartphone release marks a quiet but notable step in consumer electronics manufacturing: the company has confirmed that its new iPhone Air... read more »

3D Printing Metal
Apple Iphone 17 air

GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

GKN Aerospace announced the expansion of its Newington, Connecticut facility to include a new production line for additively manufactured Fan Case Mount Ring... read more »

Aerospace
GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

UltiMaker Launches Secure 3D Printing Line for Defense Applications

UltiMaker has introduced its Secure Line of 3D printing products specifically designed for defense and high-security environments. The initial lineup includes the UltiMaker... read more »

News
UltiMaker Launches Secure 3D Printing Line for Defense Applications

Digital Manufacturing Centre Delivers 90kg 3D Printed Military Vehicle Component

The Digital Manufacturing Centre (DMC) has completed production of its largest additive manufacturing metal component to date - a 90kg suspension and differential... read more »

3D Printing Metal
Digital Manufacturing Centre Delivers 90kg 3D Printed Military Vehicle Component

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing