3D Printing
News Videos Newsletter Contact us
Home / Environmental / 3D Printed Hydroponic Substrates For Soilless Plant Cultivation
qidi

3D Printed Hydroponic Substrates For Soilless Plant Cultivation

April 26, 2019

In a paper titled “3D Printable Hydroponics: A Digital Fabrication Pipeline for Soilless Plant Cultivation,” Dr. Yuichiro Takeuchi of Sony Computer Science Laboratories Inc outlines his experiment on 3D printing plant substrates for hydroponic growing systems. Various hydroponic components like nozzles and baskets have already been 3D printed by researchers and DIYers, but nobody had tackled the growing substrate up until now.

Hydroponics is the growing of plants without the use of soil. Water and nutrients are delivered to the plants via drip or pool systems powered by pumps. The benefits of hydroponics include larger harvests, more control over nutrient and pH levels, and less water usage because whatever isn’t absorbed by the roots can be recycled through the system. Obviously, hydroponics are especially useful in areas where good soil is hard to find or expensive to acquire. Vertical growing doesn’t work well with soil, either, which is becoming a popular feature of high-rises.

3D printed hydroponic systems, wholly fabricated using porous SBS; the systems were initially cultivated using an automated “drip” irrigation setup, but later moved to manual “pool” irrigation.
3D Printed Hydroponic Substrates examples
3D printed hydroponic systems made of a combination of porous SBS and PLA, cultivated manually using a “pool” setup.

While soil can be replaced, the necessary traits of soil that plants crave must also be replicated: water retention, oxygen permeability, and a support structure that can hold the plant securely without constricting root growth. Ideal growing substrates include clay pebbles, vermiculite, perlite, coco coir, sponges, and rock wool, the first four of which must be held in a container as they are loose particles. Dr. Takeuchi considered all of these traits before creating his 3D printed substrate, and he tested several plastics before finding one that performed well.

He tested ABS, PLA, TPU (flexible), and SBS, and only SBS had positive results, likely due to its elasticity. With the the stiffer plastics, the plants’ roots were restricted and the plants died. To achieve the porosity that would allow root growth, he made a composite filament made up of 70% SBS and 30% PVA, a material often used for 3D printing support structures because it dissolves in water. By rinsing the printed substrates in water, they become porous.

A variety of plants were successfully grown in the printed substrates, such as arugula, lettuce, basil, sunflower, and tomato. A yield test where six sets of lettuce were grown in porous SBS, sponge, and rock wool substrates indicated that SBS can produce yields that are in line with the traditional substrates, though one of the SBS plants died while none of the others did. Though it was not intended, some mold and algae grew on the SBS substrates; this reveals that it may be possible to also grow lichens and mushrooms on 3D printed substrates.

Those results are promising because SBS was not designed for growing plants. With some materials research, it seems likely that a more ideal material or printing method could be developed. Indoor agriculture and hydroponics are growing quickly as populations become more urban and as more extreme weather events become more common, so streamlining the design, installation, and operation of such systems will prove fortuitous. As such, Dr. Takeuchi also integrated a seed planting head into his 3D printer to demonstrate automated planting.

This concept would scale well with large-scale 3D printers, and substrates could be printed with geometries that are ideal for the specific plants being grown. Irrigation tubes and maintenance access points could also be incorporated into the substrate foundations to further streamline systems. Such 3D printed substrates could even be used to grow custom-shaped fruits and living sculptures.

The full study is available link)” rel=”noopener” target=”_blank”>here.

GROWLAY example
Related Story
Kai Parthy Introduces GROWLAY Indoor Farming Filament
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Cameron Naramore
Cameron is a 3D printer and CNC operator. He's fond of cooking, traveling, and science fiction.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Trek Launches 3D Printed AirLoom Saddle Line

Trek has introduced its first 3D-printed saddle series, the Aeolus AirLoom, featuring what the company calls AirLoom lattice technology. The new design updates... read more »

News
Trek Launches 3D Printed AirLoom Saddle Line

QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

QuesTek Innovations has partnered with a global niobium producer to develop a high-temperature alloy designed for additive manufacturing. The project targets aerospace and... read more »

3D Printing Metal
QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

Autodesk Research and Additive Tectonics Develop 3D Printed Floor System with Alternative Materials

Autodesk Research has partnered with Additive Tectonics to develop a new approach to concrete floor construction using 3D printing technology. The collaboration combines... read more »

Construction

NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

The National Renewable Energy Laboratory (NREL) has installed a new laser-powered metal 3D printer at its Flatirons Campus to support marine energy device... read more »

3D Printing Metal
NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

Apple Adopts 3D Printing for Titanium USB-C Ports in New iPhone Air

Apple’s latest smartphone release marks a quiet but notable step in consumer electronics manufacturing: the company has confirmed that its new iPhone Air... read more »

3D Printing Metal
Apple Iphone 17 air

GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

GKN Aerospace announced the expansion of its Newington, Connecticut facility to include a new production line for additively manufactured Fan Case Mount Ring... read more »

Aerospace
GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

UltiMaker Launches Secure 3D Printing Line for Defense Applications

UltiMaker has introduced its Secure Line of 3D printing products specifically designed for defense and high-security environments. The initial lineup includes the UltiMaker... read more »

News
UltiMaker Launches Secure 3D Printing Line for Defense Applications

Digital Manufacturing Centre Delivers 90kg 3D Printed Military Vehicle Component

The Digital Manufacturing Centre (DMC) has completed production of its largest additive manufacturing metal component to date - a 90kg suspension and differential... read more »

3D Printing Metal
Digital Manufacturing Centre Delivers 90kg 3D Printed Military Vehicle Component

Designer Creates Modular Sneakers with 3D Printed Soles and Climbing Rope Laces

Daniyar Uderbekov, a designer based in Kazakhstan, has developed UDRB, a pair of modular sneakers designed to address environmental concerns in the footwear... read more »

Fashion

Nestlé Expands 3D Printing Operations for Manufacturing Parts Across UK Sites

Nestlé has implemented standardized 3D printing processes across its UK manufacturing facilities over the past year. The company uses a team of three... read more »

News
Nestlé Expands 3D Printing Operations for Manufacturing Parts Across UK Sites

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing