3D Printing
News Videos Newsletter Contact us
Home / News / Load-bearing Metal Parts Certified by EASA
qidi

Load-bearing Metal Parts Certified by EASA

June 9, 2022

It is always exciting to see a new first in certified aerospace metal components, and this one is particularly significant as it is the first load-bearing metal printed part to be certified for aviation use. It has been designed jointly with Lufthansa Teknic and aerostructure specialist Premium AEROTEC.

You can see the item in the image below.

Printed titanium A-links
Printed titanium A-links (Image credit: Lufthansa Technik)

In previous articles we saw the first critical metal AM part certified by the USAF and also the first critical metal part certified by the FAA. Note the careful phrasing. These parts were critical, but not load-bearing. This Lufthansa Technik part is designed to carry load, and is the first time a load carrying metal AM part has been certified for aviation.

Specifically, this part, called an “A-link” is part of the de-icing system for the IAE-V2500 engine.
It was developed at Lufthansa Technik’s Additive Manufacturing (AM) Center and will be produced at the Premium AEROTEC site in Varel, Germany.

On the engine proper there are 9 of these parts located in the engine’s inlet cowl and they are used to fasten a hot air duct. Being close to the engine and operating at high altitude, the components are subjected to all kind of physical and environmental stresses and so are prone to replacement after time. The vibration in particular causes wear on the parts and in addition, extremes of temperature up to 300 degrees Celsius are experienced by the components. Typically, titanium is the go-to alloy for these components as titanium is lightweight, strong, stiff, and dimensionally stable in high temperatures.

A-link
A-link being fitted. Hand for scale. (Image credit: Lufthansa Technik)<br />

Traditionally these part were manufactured with forging processes, which requires tooling, jigs and other fixtures for fabrication. However, these steps are redundant where it comes to printing, for which they used LPBF to fuse the titanium powder into parts before a final machining for the surfaces.

For certification, Premium AEROTEC printed a statistically significant number of test parts to quantify the process and ensure quality and repeatability while characterizing the mechanical properties of the parts with respect to the printing process. It was demonstrated that the printed part is superior in tensile strength to the forged counterpart.

“We have been producing components for the aircraft cabin, the vast majority of which are made of plastic, using 3D printing for years. Now we are able to demonstrate that structurally relevant metal parts for use outside the cabin can also be manufactured additively and approved for flight operations,” said Soeren Stark, Chief Operating Officer of Lufthansa Technik.

“In this way, we have not only achieved a cost saving for the component in question, but also defined and qualified all the necessary processes for the application of this groundbreaking manufacturing method for structurally relevant metal parts.”

A-link in place
A-link in place. (Image credit: Lufthansa Technik)

The keen-eyed DfM nerds among you may have noticed in the image above that the A-link doesn’t look particularly “3D printish” in terms of its geometry. There doesn’t seem to be anything about this part that couldn’t be made via forging or machining.

Lufthansa explains this. For them, it was most important to understand and predict the process, and for this it was expedient to use the same geometry as the forged part. This has formed a baseline for comparison, and will serve as a basis for further optimisations with AM down the line.

In other words, it’s easier to certify something that looks like an old thing than it is to certify something weird looking.

But this is a step in the right direction, and it won’t be long before we see organic looking topologically optimized metal parts being certified for load-bearing (and critical) parts on aircraft.

saab gripen
Related Story
Saab Tests AM for Battle Damage Repairs on Gripen Fighter
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

The Royal Air Force has installed its first internally manufactured 3D printed component on an operational Typhoon fighter jet at RAF Coningsby this... read more »

Aerospace
RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Researchers from the University of California, Irvine and Japan's Okayama and Toho universities have published findings about how chitons develop their exceptionally hard... read more »

Materials
Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

A 3D-printed concrete bridge called Diamanti has been unveiled at the Time, Space, Existence exhibition in Venice as part of a research collaboration... read more »

Construction
3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

Caltech Researchers Develop 3D Printing Method for Custom Metal Alloys

Scientists at Caltech have created a new technique that allows precise control over the composition and structure of metal alloys through 3D printing.... read more »

3D Printing Metal
Caltech Researchers Develop 3D Printing Method for Custom Metal Alloys

University of Maine Researchers Develop Method to Predict Strength of 3D-Printed Lightweight Components

Engineers at the University of Maine's Advanced Structures and Composites Center have developed a new method to predict the strength of lightweight 3D-printed... read more »

News
University of Maine Researchers Develop Method to Predict Strength of 3D-Printed Lightweight Components

Chinese Design Firm Uses 3D Concrete Printing for Community Playground in Shandong Province

XISUI Design has completed Boulder Park, a 13,000-square-meter community playground in Ji'nan, Shandong Province, China, that incorporates 3D concrete printing technology. The park... read more »

Construction

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing