3D Printing
News Videos Newsletter Contact us
Home / News / Metallic Glass Filaments Provides New Metal Printing Process
qidi

Metallic Glass Filaments Provides New Metal Printing Process

September 7, 2018

Researchers at Yale University have just demonstrated a new means of 3D printing metal using metallic glass filaments. The technology provides a means of producing metal through processes similar to extrusion. Despite being metal, BMGs (bulk metallic glasses) become far softer upon heating, allowing for easier deposition, similar to that of thermoplastics.

Since BMGs have a super-cooled liquid region in their thermodynamic profile, they can achieve such a state. Harnessing these characteristics, the researchers generate solid, high-strength metal components in conditions similar to those of FFF/FDM. Much like traditional thermoplastics, these materials exhibit high strength and elastic limits.

uDiamond Filament Improves Print Speed With Nanodiamonds
Related Story
uDiamond Filament Improves Print Speed With Nanodiamonds

“We have shown theoretically in this work that we can use a range of other bulk metallic glasses and are working on making the process more practical- and commercially-usable to make 3D printing of metals as easy and practical as the 3D printing of thermoplastics,” said Prof. Jan Schroers, who was also working with Desktop Metal for this project.

Benefits of Metallic Glass Filaments

Metallic Glass Filaments Provides New Metal Printing Process

The metallic glass filament rods also exhibit high fracture toughness and high corrosion resistance. This makes them ideal for industrial production in the aerospace or medical fields. The researchers tested metallic glass filaments consisting of zirconium, titanium, copper, nickel and beryllium. This alloy formula (Zr44Ti11Cu10Ni10Be25) is quite a common BMG.

The team employed amorphous rods measuring 1 mm in diameter and 700mm in length. The extrusion temperate was 460 °C with an extrusion force of 10 to 1,000 Newtons to mold the softened fibers and press them through a 0.5mm diameter nozzle. The fibers are then ready to extrude into a 400°C stainless steel mesh where crystallization delays until for the period of a whole day has, after which a robotically controlled extrusion process creates the desired object.

Prof. Schroers added, “In order to widely use BMG 3D printing, practical BMG feedstock available for a broad range of BMGs has to be made available. To use the fused filament fabrication commercially, layer-to-layer bonding has to be more reliable and consistent.”

ultrafuse 316L review carabiner featured image
Related Story
Hands-on Review: BASF Ultrafuse 316L Stainless Steel Filament

Featured image courtesy of the study’s authors.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Scientists 3D Print Solar-Powered Sponge for Seawater Desalination

Researchers have developed a 3D-printed aerogel material that uses sunlight to convert seawater into drinking water. The sponge-like structure contains microscopic vertical channels... read more »

News

Revopoint Launches Major Prime Event 2025 Sale with Up to 40% Off 3D Scanners and Accessories

Revopoint is kicking off its Prime Event 2025 with a series of major discounts on its range of professional 3D scanners and accessories.... read more »

News

Turkish Companies Test 3D Printed Component for Armored Vehicles

MetalWorm and Nurol Makina, both based in Ankara, Turkey, have completed testing of an armored vehicle component manufactured using Directed Energy Deposition (DED)... read more »

3D Printing Metal
Turkish Companies Test 3D Printed Component for Armored Vehicles

McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

TissueTinker, a McGill University spinout company, has developed 3D bioprinting technology to create miniaturized tumor models for cancer drug testing. The company recently... read more »

Medical
McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

The University of Twente has received €13.6 million in funding from the 2024 NWA ORC program to lead two research projects focused on... read more »

News
University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

China’s 3D Printed Micro Turbojet Engine Completes Maiden Flight

The Aero Engine Corporation of China (AECC) has successfully completed the first flight test of its 3D-printed micro turbojet engine in Inner Mongolia... read more »

Aerospace
China's 3D Printed Micro Turbojet Engine Completes Maiden Flight

Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Researchers at the University of Cambridge's Center for Industrial Photonics have developed a new additive manufacturing technique called laser-assisted cold spray (LACS). The... read more »

3D Printing Metal
Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Titomic Netherlands Secures Strategic Funding to Advance Cold Spray 3D Printing Technology

Titomic Limited, an Australian company specializing in cold spray additive manufacturing, has received €800,000 in funding from the Netherlands' 3D Print Kompas program.... read more »

3D Printing Metal
Titomic Netherlands Secures Strategic Funding to Advance Cold Spray 3D Printing Technology

3D-Printed Insects Help Scientists Map the Limits of Mimicry in Nature

Researchers at the University of Nottingham have developed a method to 3D print life-sized, color-accurate insect models for biological research. The team, led... read more »

Environmental

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing