3D Printing
News Videos Newsletter Contact us
Home / News / ORNL now Dabbling with 3D Printed Carbon Capture Devices
revopoint

ORNL now Dabbling with 3D Printed Carbon Capture Devices

September 12, 2020

We have covered the 3D printing ambitions of Oak Ridge National Laboratory a couple of times before. And they are indeed HUGE ambitions.

Take a look at their 3D printed nuclear thimble gizmo and their 3D printed nuclear reactor here.

But ORNL does not exclusively deal with nuclear power. They still have a hand in developing technologies to enhance fossil fuel power generation processes.

Their most recent 3D printed device does exactly that, and the device in question is designed to capture carbon dioxide from fossil-fuel carbon-emitting smokestacks via a process of chemical absorption.

It works by connecting the exhaust gas flue to an absorption column inside which the 3D printed component is housed. The gas flow is passed through some chemicals (such as monoethanolamine) which react with the gas, capturing the carbon dioxide in the chemical. The problem is, this reaction being exothermic generates a lot of heat in the column, which reduces the efficiency of the reactions. So the new ORNL device serves as a kind of a heat exchanger. It IS a heat exchanger.

The GIF below illustrates the flow of the gas and coolant paths. The coolant inlet is at the right, the gasses are moving down the column from top to bottom, they pass through the 3D printed coolant channels and the removed heat is dumped out of the outlet on the left hand side of the column in the image.

 3D printed heat exchanger core
Image credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

The GIF above shows the cross section of the column. The image below shows the printed device proper, and you can see the inlet port on the side there, for your reference.

The aluminium part of the intensified device
The aluminium part of the intensified device. Image credit: Carlos Jones/ORNL, U.S. Dept. of Energy

The absorption column itself measures at “1-meter-tall by 8-inch-wide”, and before you scold us for mixing metric and imperial, that is a direct quote from the ORNL press release.

You can see the column in the image below. We will assume that the actual column itself is only a fraction of what is shown in the image, unless the engineer installing the component is only 0.75 metres tall (and apparently 8 inches wide).

In the image above the engineer is installing the carbon capture device in between the column’s packing devices. ORNL refers to their 3D printed multifunction heat exchanger as the “intensified device”.

It is multifunction because in addition to the heat exchanger, it also doubles as a mass exchanging contactor.

“We call the device intensified because it enables enhanced mass transfer (the amount of CO2 transferred from a gas to a liquid state) through in-situ cooling,” said Costas Tsouris, project researcher at ORNL.

“Controlling the temperature of absorption is critical to capturing carbon dioxide.”

In addition to the temperature of the reaction, other factors influencing the adsorption of the CO2 are the exhaust gas flow rate, and also the flow rate of the chemical solvent used to react with the CO2.

The experiments so far have determined that there are optimal responses produced by varying these input factors. Next up, the team will attempt to see the effects of varying geometry on cooling and reaction rates, and hope to discover the prime operating conditions for CO2 removal.

In terms of materials, the current device is manufactured from 3D printed aluminium, but researchers are looking at using thermally conductive polymers also.

“The device can also be manufactured using other materials, such as emerging high thermal conductivity polymers and metals. Additive manufacturing methods like 3D printing are often cost-effective over time because it takes less effort and energy to print a part versus traditional manufacturing methods,” said Lonnie Love, manufacturing engineer and designer of the device.

Well, good news Lonnie…

We have an article on thermally conductive 3D printed polymers right here.

ORNL…you are welcome!

thermally conductive polymer materials for 3d printing
Related Story
Thermally Conductive Polymer Materials for 3D Printing
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Mandrill’s Custom Bonneville T120 Street Tracker Reimagines Classic Design

Chinese custom shop Mandrill Garage has transformed a Triumph Bonneville T120 into a street tracker that blends racing aesthetics with practical functionality. The... read more »

Automotive
Mandrill's Custom Bonneville T120 Street Tracker Reimagines Classic Design

Design Lab Invents Modular, Fully 3D Printed Wheelchair for Kids

MakeGood NOLA has developed a modular, fully 3D-printed wheelchair for children ages 2 to 8. The New Orleans-based adaptive design lab created the... read more »

News

Donkervoort’s New P24 RS Supercar Uses 3D-Printed Intercoolers

Conflux Technology, an Australian company specializing in heat exchangers, has created a 3D-printed intercooler for Donkervoort's upcoming P24 RS supercar. The metal 3D-printed... read more »

Automotive
Donkervoort's New P24 RS Supercar Uses 3D-Printed Intercoolers

3D Printed Concrete Bus Stop Creates Sculptural Shelter in Slovakia

A new 3D-printed concrete bus stop has been installed in Bratislava, Slovakia, as part of urban development in the growing Čerešne district. The... read more »

Construction
3D Printed Concrete Bus Stop Creates Sculptural Shelter in Slovakia

Reducing Porosity Key to Stronger Large-Scale 3D Prints

Oak Ridge National Laboratory (ORNL) researchers have created a vacuum-assisted extrusion technique that reduces internal porosity in large-scale 3D-printed polymer parts by up... read more »

News

Engineer Creates 3D Printed Trekking Pole Attachment to Combat Trail Litter

Aerospace engineer John McShane has developed "CleanTrek," a 3D-printed attachment for hiking poles designed to collect litter on trails. Inspired by a trash-strewn... read more »

Environmental
Engineer Creates 3D Printed Trekking Pole Attachment to Combat Trail Litter

New $9M Illinois Lab to 3D Print Large Vehicle Parts for US Military

The University of Illinois Urbana-Champaign is establishing a new research center focused on developing additive manufacturing methods for large metal parts. The center... read more »

Military
New $9M Illinois Lab to 3D Print Large Vehicle Parts for US Military

University of Florida Students Develop Simple Spool to Address 3D Printing Waste

A team of University of Florida mechanical engineering students has created a device aimed at reducing plastic waste in 3D printing. The device,... read more »

Environmental
University of Florida Students Develop Simple Spool to Address 3D Printing Waste

Cadillac CELESTIQ Features Over 100 3D Printed Parts in Luxury Hand-Built Design

General Motors has expanded its use of additive manufacturing beyond prototyping to include functional parts in production vehicles. The Cadillac CELESTIQ, a hand-built... read more »

Automotive

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing