3D Printing
News Videos Newsletter Contact us
Home / News / Research Shows Promising for Thermally Conductive Filaments
qidi

Research Shows Promising for Thermally Conductive Filaments

September 16, 2022

You may recall a while back that we did a series of articles on various thermally conductive and electrically conductive polymers suitable for 3D printing.

In this article, we will revisit the concept of thermally conductive plastic filaments, because a team of researchers has released a paper referencing the very materials that we referred to previously.

The researchers from the South-Eastern Finland University of Applied Sciences (XAMK), and the University of Southern Denmark have published their findings around the use of thermally conductive plastics in combination with topology optimization for the production of passive heatsinks.

thermograph
Infrared thermograph of a topology optimized plastic heatsink. (Image credit: XAMK/University of Southern Denmark)

Specifically the research focused on the use of the ICE9 Rigid Nylon thermally conductive nylon filament from TCPoly, for the design of passive heat sinks using topology optimization for anisotropic heat transfer.

ICE9 Rigid Nylon is one of the filaments we looked at in our previous article on thermally conductive plastics.

Recall how we said that both electrical and thermal conductivity can be altered by the addition of carbon to plastic bulk materials.

The specimens in the research were printed in various orientations and topologies and thermal conductivity measurements were performed to assess the effectivity of the printing process parameters.

The research showed that their experiments showed a 10%–20% reduction in thermal resistance compared to a reference straight fin design.

The image below shows a schematic of the aforementioned straight fin design used in the experiments. Reference samples were made from both printed filament and from extruded aluminum.

Reference design
Reference design apparatus layout. (Image credit: XAMK/University of Southern Denmark)

The heatsinks were produced with a Minifactory Ultra 3D printer. The printer was selected due to its ability to print high temperature filaments with (dual) nozzle temperatures of up to 470°C.

Due to the anisotropic differences between orientations (especially regarding air gaps and layer bonding imperfections), it was noted that there was better thermal conductivity in one orientation (in-layer orientation) compared to the cross layer orientation.

This table shows the results of the thermal conductivity experiments for both in-layer and cross-layer orientations of the ICE9 samples compared to the reference designs.

Various optimizations were carried out before the final prints to eliminate air gaps and other defects.

In practice, according to the paper, the reduction in air gaps was achieved by adjusting material fed (flow), the width of the print lines (line width) and the settings for filling and infill overlap. By adjusting these settings, it was possible to achieve the optimal prints with the smallest air gaps.

Topologically optimized
Topologically optimized samples in two orientations. (Image credit: XAMK/University of Southern Denmark)

The paper concludes that topology optimization can indeed achieve improved performance of passive heat sinks produced using thermally conductive filaments such as the ICE9 Rigid Nylon material.

The best designs that the researchers had tested demonstrated a 10% and 20% lower thermal resistance when compared to the reference straight-fin heat sink in the vertical and horizontal installation directions, respectively.

In terms of the gains from topology optimization, the optimized heat sinks achieved a 5 to 10% improvement in the thermal resistance for the vertical installation direction and a 15 to 20% improvement for the horizontal direction.

This was due to the performance of the straight fin reference design, which has superior performance in that orientation thanks to the layout of the fins which are aligned in the direction of gravity.

It was also noted that control of the thermal environment was necessary to ensure best results, as effects such as warping could affect the isotropy of the thermal conductivity.
In short, the research demonstrates the utility of both topology optimization and thermally conductive filament, but notes that the effectivity of the parts could be improved by tweaking the parameters further to fit thermal performance requirements.

You can read the open access paper, titled “Material extrusion additive manufacturing and experimental testing of topology-optimized passive heat sinks using a thermally-conductive plastic filament” over at this link.

electrically conductive polymer composites for 3d printing
Related Story
Electrically Conductive Polymer Composites for 3D Printing
thermally conductive polymer materials for 3d printing
Related Story
Thermally Conductive Polymer Materials for 3D Printing
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

The Royal Air Force has installed its first internally manufactured 3D printed component on an operational Typhoon fighter jet at RAF Coningsby this... read more »

Aerospace
RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Researchers from the University of California, Irvine and Japan's Okayama and Toho universities have published findings about how chitons develop their exceptionally hard... read more »

Materials
Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

A 3D-printed concrete bridge called Diamanti has been unveiled at the Time, Space, Existence exhibition in Venice as part of a research collaboration... read more »

Construction
3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing