3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Print Oxygen Sensitive Nanoparticles Into Complex Tissue
qidi

Researchers Print Oxygen Sensitive Nanoparticles Into Complex Tissue

October 2, 2018

Researchers from multiple institutions have developed a gel that uses oxygen sensitive nanoparticles for the printing of complex biofilms and tissue-like structures. The finding allows the researchers to detect oxygen content and visually indicate it using sensors. This new venture has potential applications in biophotonics, biomedicine and biochemistry.

The study demonstrates how these bio-inks could use sensor nanoparticles for monitoring algal photosynthesis and respiration as well as stem cell respiration in bio-printed structures with one or several cell types. Basically, the nanoparticles allow it to glow and the group can image them with a camera. While this may not seem like a big deal, it can be a godsend for studying cells on the micro-scale. Biologists could also monitor oxygen distribution without any heavy equipment.

FRESH 2: 3D Printing A Heart From Collagen Bioink
Related Story
FRESH 2: Printing Heart Components From Collagen Bioinks

Professor Michael Kühl at the Department of Biology, University of Copenhagen explains: “3D printing is a widespread technique for producing the object in plastic, metal and other abiotic materials. Likewise, living cells can be 3D printed in biocompatible gel materials (bio-inks) and such 3D bioprinting is a rapidly developing field, eg, in biomedical studies, where stem cells are cultivated in 3D printed constructs mimicking the complex structure of tissue and bones. Such attempts lack online monitoring of the metabolic activity of cells growing in bio-printed constructs; currently, such measurements largely rely on destructive sampling. We have developed a patent-pending solution to this problem.”

Developing Biogels

Researchers Print Oxygen Sensitive Nanoparticles Into Complex Tissue

The group developed the bio-ink by inserting glowing oxygen sensitive nanoparticles into the print matrix. When blue light excites the nanoparticles, they emit red luminescent light in proportion to the local oxygen concentration. With more oxygen, there is far less red luminescence and vice versa.

Cameras can capture the distribution of red luminescence and thus oxygen across bio-printed living structures. The main benefit is in online, non-invasive monitoring of oxygen distribution and dynamics that researchers can map to draw correlations with the growth and distribution of cells in the constructs without the need for destructive types of sampling.

Prof Kühl states that “it is important that the addition of nanoparticles doesn’t change the mechanical properties of the bio-ink, e.g. to avoid cell stress and death during the printing process. Furthermore, the nanoparticles should not inhibit or interfere with the cells.” Non-invasive forms of research are, after all, crucial to studying delicate forms of biology.

The research may even have further applications beyond the purely biological. It may be a great way of creating natural/non-electric luminescence in dark habitats or even rooms. It could be of great use in space, particularly with it’s ability to study oxygen levels without disturbing the samples. The research is still young and researchers are still experimenting with new forms.

Related Story
3D Printed Heart Marks a Breakthrough in Bioprinting

Featured image courtesy of Anya Lode/TU Dresden, retrieved via Drug Target Review. The full study is available here.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

The Royal Air Force has installed its first internally manufactured 3D printed component on an operational Typhoon fighter jet at RAF Coningsby this... read more »

Aerospace
RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Researchers from the University of California, Irvine and Japan's Okayama and Toho universities have published findings about how chitons develop their exceptionally hard... read more »

Materials
Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

A 3D-printed concrete bridge called Diamanti has been unveiled at the Time, Space, Existence exhibition in Venice as part of a research collaboration... read more »

Construction
3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

Caltech Researchers Develop 3D Printing Method for Custom Metal Alloys

Scientists at Caltech have created a new technique that allows precise control over the composition and structure of metal alloys through 3D printing.... read more »

3D Printing Metal
Caltech Researchers Develop 3D Printing Method for Custom Metal Alloys

University of Maine Researchers Develop Method to Predict Strength of 3D-Printed Lightweight Components

Engineers at the University of Maine's Advanced Structures and Composites Center have developed a new method to predict the strength of lightweight 3D-printed... read more »

News
University of Maine Researchers Develop Method to Predict Strength of 3D-Printed Lightweight Components

Chinese Design Firm Uses 3D Concrete Printing for Community Playground in Shandong Province

XISUI Design has completed Boulder Park, a 13,000-square-meter community playground in Ji'nan, Shandong Province, China, that incorporates 3D concrete printing technology. The park... read more »

Construction

RMIT Develops Lower-Cost Titanium Alloy for 3D Printing Applications

Researchers at RMIT University have developed a new titanium alloy that costs 29% less to produce than standard titanium used in 3D printing.... read more »

3D Printing Metal
RMIT Develops Lower-Cost Titanium Alloy for 3D Printing Applications

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing