3D Printing
News Videos Newsletter Contact us
Home / News / TU Eindhoven Professor Invents New Code Formulations For Printing Concrete
revopoint

TU Eindhoven Professor Invents New Code Formulations For Printing Concrete

February 15, 2018

A new set of formulae appear to have cracked the code on efficient concrete 3D printing. While 3D printed concrete has been around for some time, it is an inconsistent method. To remedy this, Professor Akke Suiker developed a string of codes that helps define what happens during concrete printing. Using this code, engineers can construct walls and other structures with better consistency.

Concrete printing gets significantly more difficult due to the how quickly concrete solidifies. Often times, one layer hardens before the other makes it on top. This can create inconsistencies in and cause the wall to collapse or buckle onto itself.

Related Story
Eindhoven University Set to Develop Full Community of 3D Printed Homes Next Year
3d printed concrete bicycle bridge
Related Story
Engineers in Eindhoven are Constructing a 3D Printed Concrete Bicycle Bridge
3D Printed Cement Paste Becomes Stronger As it Cracks
Related Story
3D Printed Cement Paste Becomes Stronger As it Cracks

It’s unsurprising that TU Eindhoven have come up with a relevant solution to 3D concrete printing. The university has undertaken a concrete printing project of their own, in conjunction with the Royal BAM group, printing out a bicycle bridges in the Netherlands with their own personal construction-grade printer. This was the same printer that Suiker used validate his equations using the Finite Element Method.

House 3D Printing Factory Opens In Eindhoven
Related Story
House 3D Printing Factory Opens In Eindhoven

Developing Better Construction

3D Printing concrete structures

So how did Suiker and his team develop this new code? The researchers first came up with a few types of failures in the structure of concrete. They narrowed these down to two: plastic and elastic buckling. They then measured these failure types in relation to types of walls (i.e. free, semi-supported and fully clamped walls). The researchers used the data to derive a few mathematical models.

Comparing the data in relation to speed of printing and the rate of solidification in concrete gave them a workable set of conditions for building concrete. Finally, Suiker factored in potential imperfections in the 3D printed wall and their influence on buckling and collapse, completing the model. This led to the code that takes into account all these factors when it’s building up a wall.

Suiker will be presenting the findings of the research at a seminar in the University of Cambridge in March.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

3D Printed Metal Molds Poised to Accelerate US Auto Manufacturing

Oak Ridge National Laboratory (ORNL) researchers have demonstrated that 3D-printed metal molds offer significant advantages for producing large composite components for automotive manufacturing.... read more »

Automotive

Auburn-based XO Armor Joins Montgomery TechLab’s Defense Accelerator Program

XO Armor, a company that specializes in on-site 3D printing of custom-fit protective orthotics, has been selected for the first cohort of Montgomery... read more »

News
Auburn-based XO Armor Joins Montgomery TechLab's Defense Accelerator Program

ASTM International Teams with Major Manufacturers to Create Additive Manufacturing Certification

ASTM International's Additive Manufacturing Center of Excellence (AM CoE) has introduced a new manufacturer certification program aimed at improving quality assurance and process... read more »

News
ASTM International Teams with Major Manufacturers to Create Additive Manufacturing Certification

Egypt to Boost Domestic Spare Parts Production with Additive Manufacturing

Egypt's Arab Organization for Industrialization (AOI) hosted a workshop on June 2nd, 2025, to advance the localization of industrial spare parts manufacturing using... read more »

News
Egypt to Boost Domestic Spare Parts Production with Additive Manufacturing

3D Printing Breakthrough Reduces Waste While Enabling Complex Designs

MIT engineers have developed a new 3D printing resin that forms two different types of solids depending on the light used. The material... read more »

Materials
3D Printing Breakthrough Reduces Waste While Enabling Complex Designs

Magnetic 3D Printed Pen Shows Promise for Parkinson’s Diagnosis

Researchers have developed a 3D-printed pen containing magnetic ink that may help identify Parkinson's disease through handwriting analysis. The device captures motion patterns... read more »

News

Deuter Introduces New Mountain Bike Pack with 3D Printed Spine Protection

German pack manufacturer Deuter has launched the Hiline, a new mountain bike hydration pack featuring 3D-printed spine protection technology. The pack is specifically... read more »

News
Deuter Introduces New Mountain Bike Pack with 3D Printed Spine Protection

UltiMaker Launches S6 3D Printer

UltiMaker has announced the release of the S6 3D printer, designed specifically for engineers, manufacturing teams, and maintenance crews. The new printer focuses... read more »

News
UltiMaker Launches S6 3D Printer

Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

Thought3D just introduced two new products designed to meet evolving needs in additive manufacturing. The Magigoo Glide Kit and Magigoo Supergrip respond to... read more »

News
Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

3D Printed Electric Motorcycle by DAB Motors Inspired by Akira’s Iconic Bike

DAB Motors and Vita Veloce Team (VVT) have unveiled a custom electric motorcycle featuring 3D printed bodywork inspired by the iconic bike from... read more »

Automotive

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing