3D Printing
News Videos Newsletter Contact us
Home / News / Stanford Researchers Develop New Method for 3D Printing Complex Vascular Networks
qidi

Stanford Researchers Develop New Method for 3D Printing Complex Vascular Networks

June 13, 2025

Stanford University researchers have created a computational platform that designs and 3D prints complex vascular networks needed for bioprinted organs. The system, published in Science on June 12, generates designs resembling human vascular structures 200 times faster than previous methods. This advancement addresses a key challenge in tissue engineering: ensuring oxygen and nutrients can reach all cells in artificially grown organs.

Stanford Researchers Develop New Method for 3D Printing Complex Vascular Networks
Image Credit: Stanford / Andrew Brodhead

The algorithm creates vascular trees that mimic native organ blood vessel architectures while incorporating fluid dynamics simulations. “The ability to scale up bioprinted tissues is currently limited by the ability to generate vasculature for them – you can’t scale up these tissues without providing a blood supply,” said Alison Marsden, professor at Stanford Schools of Engineering and Medicine and co-senior author of the study. The design for a human heart vascular system with one million vessels took approximately five hours to generate.

Using a 3D bioprinter, the team successfully printed a network with 500 branches and tested a simpler version with human embryonic kidney cells. The researchers created a thick ring loaded with cells and built a network of 25 vessels running through it, demonstrating that the printed channels could keep cells alive when nutrients and oxygen were pumped through.

The current printed structures are channels rather than complete blood vessels with muscle and endothelial cells. “This is the first step toward generating really complex vascular networks,” said Dominic Rütsche, a postdoctoral scholar and co-first author. “We can print them at never-before-seen complexities, but they are not yet fully physiological vessels.”

The Stanford team has made their software available through the SimVascular open-source project. Researchers are now working to combine this vascular printing capability with their progress in growing heart cells from human stem cells. “We have successfully generated enough heart cells from human stem cells to print the whole human heart, and now we can design a good, complex vascular tree to keep them fed and living,” said Mark Skylar-Scott, assistant professor of bioengineering and co-senior author.

The work represents progress toward addressing the needs of more than 100,000 people on organ transplant waiting lists in the U.S. Personalized organs created using a patient’s own cells could potentially reduce both waiting times and rejection risks, though significant challenges remain before fully functional organs can be produced.

Source: news.stanford.edu

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Scientists 3D Print Solar-Powered Sponge for Seawater Desalination

Researchers have developed a 3D-printed aerogel material that uses sunlight to convert seawater into drinking water. The sponge-like structure contains microscopic vertical channels... read more »

News

Revopoint Launches Major Prime Event 2025 Sale with Up to 40% Off 3D Scanners and Accessories

Revopoint is kicking off its Prime Event 2025 with a series of major discounts on its range of professional 3D scanners and accessories.... read more »

News

Turkish Companies Test 3D Printed Component for Armored Vehicles

MetalWorm and Nurol Makina, both based in Ankara, Turkey, have completed testing of an armored vehicle component manufactured using Directed Energy Deposition (DED)... read more »

3D Printing Metal
Turkish Companies Test 3D Printed Component for Armored Vehicles

McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

TissueTinker, a McGill University spinout company, has developed 3D bioprinting technology to create miniaturized tumor models for cancer drug testing. The company recently... read more »

Medical
McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

The University of Twente has received €13.6 million in funding from the 2024 NWA ORC program to lead two research projects focused on... read more »

News
University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

China’s 3D Printed Micro Turbojet Engine Completes Maiden Flight

The Aero Engine Corporation of China (AECC) has successfully completed the first flight test of its 3D-printed micro turbojet engine in Inner Mongolia... read more »

Aerospace
China's 3D Printed Micro Turbojet Engine Completes Maiden Flight

Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Researchers at the University of Cambridge's Center for Industrial Photonics have developed a new additive manufacturing technique called laser-assisted cold spray (LACS). The... read more »

3D Printing Metal
Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Titomic Netherlands Secures Strategic Funding to Advance Cold Spray 3D Printing Technology

Titomic Limited, an Australian company specializing in cold spray additive manufacturing, has received €800,000 in funding from the Netherlands' 3D Print Kompas program.... read more »

3D Printing Metal
Titomic Netherlands Secures Strategic Funding to Advance Cold Spray 3D Printing Technology

3D-Printed Insects Help Scientists Map the Limits of Mimicry in Nature

Researchers at the University of Nottingham have developed a method to 3D print life-sized, color-accurate insect models for biological research. The team, led... read more »

Environmental

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing